期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
1
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 Quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
下载PDF
A Fractional Drift Diffusion Model for Organic Semiconductor Devices 被引量:1
2
作者 Yi Yang Robert A.Nawrocki +1 位作者 Richard M.Voyles Haiyan H.Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第10期237-266,共30页
Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on ... Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on solving the governing equations of the Fr-DD model is practically nonexistent.In this paper,an iterative solver with high precision is developed to solve both the transient and steady-state Fr-DD model for organic semiconductor devices.The Fr-DD model is composed of two fractionalorder carriers(i.e.,electrons and holes)continuity equations coupled with Poisson’s equation.By treating the current density as constants within each pair of consecutive grid nodes,a linear Caputo’s fractional-order ordinary differential equation(FrODE)can be produced,and its analytic solution gives an approximation to the carrier concentration.The convergence of the solver is guaranteed by implementing a successive over-relaxation(SOR)mechanism on each loop of Gummel’s iteration.Based on our derivations,it can be shown that the Scharfetter–Gummel discretization method is essentially a special case of our scheme.In addition,the consistency and convergence of the two core algorithms are proved,with three numerical examples designed to demonstrate the accuracy and computational performance of this solver.Finally,we validate the Fr-DD model for a steady-state organic field effect transistor(OFET)by fitting the simulated transconductance and output curves to the experimental data. 展开更多
关键词 fractional drift diffusion model Gummel’s iteration Caputo’s fractional-order ordinary differential equation organic field effect transistor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部