The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-di...The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.展开更多
Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accu...Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.展开更多
BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treat...BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treatment.Noninvasive altern-atives for liver biopsy such as transient elastography(TE)and diffusion-weighted magnetic resonance imaging(DW-MRI)are critical needs.AIM To evaluate TE and DW-MRI as noninvasive tools for predicting liver fibrosis in children with CHC.METHODS This prospective cross-sectional study initially recruited 100 children with CHC virus infection.Sixty-four children completed the full set of investigations including liver stiffness measurement(LSM)using TE and measurement of apparent diffusion coefficient(ADC)of the liver and spleen using DW-MRI.Liver biopsies were evaluated for fibrosis using Ishak scoring system.LSM and liver and spleen ADC were compared in different fibrosis stages and correlation analysis was performed with histopathological findings and other laboratory parameters.RESULTS Most patients had moderate fibrosis(73.5%)while 26.5%had mild fibrosis.None had severe fibrosis or cirrhosis.The majority(68.8%)had mild activity,while only 7.8%had moderate activity.Ishak scores had a significant direct correlation with LSM(P=0.008)and were negatively correlated with both liver and spleen ADC but with no statistical significance(P=0.086 and P=0.145,respectively).Similarly,histopatho-logical activity correlated significantly with LSM(P=0.002)but not with liver or spleen ADC(P=0.84 and 0.98 respectively).LSM and liver ADC were able to significantly discriminate F3 from lower fibrosis stages(area under the curve=0.700 and 0.747,respectively)with a better performance of liver ADC.CONCLUSION TE and liver ADC were helpful in predicting significant fibrosis in children with chronic hepatitis C virus infection with a better performance of liver ADC.展开更多
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindicatio...BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.展开更多
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep...Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.展开更多
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli...Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
Cs and I can migrate through fuel-cladding interfaces and accelerate the cladding corrosion process induced by the fuel-cladding chemical interaction.Cr coating has emerged as an important candidate for mitigating thi...Cs and I can migrate through fuel-cladding interfaces and accelerate the cladding corrosion process induced by the fuel-cladding chemical interaction.Cr coating has emerged as an important candidate for mitigating this chemical interaction.In this study,first-principles calculations were employed to investigate the diffusion behavior of Cs and I in the Cr bulk and grain boundaries to reveal the microscopic interaction mitigation mechanisms at the fuel-cladding interface.The interaction between these two fission products and the Cr coating were studied systematically,and the Cs and I temperature-dependent diffusion coefficients in Cr were obtained using Bocquet’s oversized solute-atom model and Le Claire’s nine-frequency model,respectively.The results showed that the Cs and I migration barriers were significantly lower than that of Cr,and the Cs and I diffusion coefficients were more than three orders of magnitude larger than the Cr self-diffusion coefficient within the temperature range of Generation-IV fast reactors(below 1000 K),demonstrating the strong penetration ability of Cs and I.Furthermore,Cs and I are more likely to diffuse along the grain boundary because of the generally low migration barriers,indicating that the grain boundary serves as a fast diffusion channel for Cs and I.展开更多
The most critical part of a neutron computed tomography(NCT) system is the image processing algorithm,which directly affects the quality and speed of the reconstructed images.Various types of noise in the system can d...The most critical part of a neutron computed tomography(NCT) system is the image processing algorithm,which directly affects the quality and speed of the reconstructed images.Various types of noise in the system can degrade the quality of the reconstructed images.Therefore,to improve the quality of the reconstructed images of NCT systems,efficient image processing algorithms must be used.The anisotropic diffusion filtering(ADF) algorithm can not only effectively suppress the noise in the projection data,but also preserve the image edge structure information by reducing the diffusion at the image edges.Therefore,we propose the application of the ADF algorithm for NCT image reconstruction.To compare the performance of different algorithms in NCT systems,we reconstructed images using the ordered subset simultaneous algebraic reconstruction technique(OS-SART) algorithm with different regular terms as image processing algorithms.In the iterative reconstruction,we selected two image processing algorithms,the Total Variation and split Bregman solved total variation algorithms,for comparison with the performance of the ADF algorithm.Additionally,the filtered back-projection algorithm was used for comparison with an iterative algorithm.By reconstructing the projection data of the numerical and clock models,we compared and analyzed the effects of each algorithm applied in the NCT system.Based on the reconstruction results,OS-SART-ADF outperformed the other algorithms in terms of denoising,preserving the edge structure,and suppressing artifacts.For example,when the 3D Shepp–Logan was reconstructed at 25 views,the root mean square error of OS-SART-ADF was the smallest among the four iterative algorithms,at only 0.0292.The universal quality index,mean structural similarity,and correlation coefficient of the reconstructed image were the largest among all algorithms,with values of 0.9877,0.9878,and 0.9887,respectively.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr...We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.展开更多
The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-...The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf...Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.展开更多
Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by ut...Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field.展开更多
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
基金the Key Program of National Natural Science Foundation of China(No.12335008),the Postgraduate Research and Innovation Project of Huzhou University(No.2023KYCX62)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352712)the Huzhou science and technology planning project(No.2021GZ60)。
文摘The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism.In this study,a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO_(4)^(−),HCrO_(4)^(−),and I−in saturated compacted bentonite under different salinities and compacted dry densities.The machine-learning models were trained using two datasets.One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency(JAEA-DDB)and 15 publications.The other dataset,comprising 15,000 pseudo-instances,was produced using a multi-porosity model and contained eight input features.The results indicate that the former dataset yielded a higher predictive accuracy than the latter.Light gradient-boosting exhibited a higher prediction accuracy(R2=0.92)and lower error(MSE=0.01)than the other machine-learning algorithms.In addition,Shapley Additive Explanations,Feature Importance,and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient,thereby offering valuable insights.
基金suppor ted by Chinese NSF projects(42173021,41873024,42130114)the strategic priority research program(B)of CAS(XDB41000000)+1 种基金the preresearch Project on Civil Aerospace Technologies No.D020202 funded by the Chinese National Space Administration(CNSA)Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG)。
文摘Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.
基金Egyptian Ministry for Scientific Research,Science,Technology&Innovation Funding Authority(STDF),No.HCV-3506.
文摘BACKGROUND Chronic hepatitis C(CHC)is a health burden with consequent morbidity and mortality.Liver biopsy is the gold standard for evaluating fibrosis and assessing disease severity and prognostic purposes post-treatment.Noninvasive altern-atives for liver biopsy such as transient elastography(TE)and diffusion-weighted magnetic resonance imaging(DW-MRI)are critical needs.AIM To evaluate TE and DW-MRI as noninvasive tools for predicting liver fibrosis in children with CHC.METHODS This prospective cross-sectional study initially recruited 100 children with CHC virus infection.Sixty-four children completed the full set of investigations including liver stiffness measurement(LSM)using TE and measurement of apparent diffusion coefficient(ADC)of the liver and spleen using DW-MRI.Liver biopsies were evaluated for fibrosis using Ishak scoring system.LSM and liver and spleen ADC were compared in different fibrosis stages and correlation analysis was performed with histopathological findings and other laboratory parameters.RESULTS Most patients had moderate fibrosis(73.5%)while 26.5%had mild fibrosis.None had severe fibrosis or cirrhosis.The majority(68.8%)had mild activity,while only 7.8%had moderate activity.Ishak scores had a significant direct correlation with LSM(P=0.008)and were negatively correlated with both liver and spleen ADC but with no statistical significance(P=0.086 and P=0.145,respectively).Similarly,histopatho-logical activity correlated significantly with LSM(P=0.002)but not with liver or spleen ADC(P=0.84 and 0.98 respectively).LSM and liver ADC were able to significantly discriminate F3 from lower fibrosis stages(area under the curve=0.700 and 0.747,respectively)with a better performance of liver ADC.CONCLUSION TE and liver ADC were helpful in predicting significant fibrosis in children with chronic hepatitis C virus infection with a better performance of liver ADC.
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
基金Supported by Beijing Hospitals Authority Youth Program,No.QML20231103Beijing Hospitals Authority Ascent Plan,No.DFL20191103National Key R&D Program of China,No.2023YFC3402805.
文摘BACKGROUND About 10%-31% of colorectal liver metastases(CRLM)patients would concomitantly show hepatic lymph node metastases(LNM),which was considered as sign of poor biological behavior and a relative contraindication for liver resection.Up to now,there’s still lack of reliable preoperative methods to assess the status of hepatic lymph nodes in patients with CRLM,except for pathology examination of lymph node after resection.AIM To compare the ability of mono-exponential,bi-exponential,and stretchedexponential diffusion-weighted imaging(DWI)models in distinguishing between benign and malignant hepatic lymph nodes in patients with CRLM who received neoadjuvant chemotherapy prior to surgery.METHODS In this retrospective study,97 CRLM patients with pathologically confirmed hepatic lymph node status underwent magnetic resonance imaging,including DWI with ten b values before and after chemotherapy.Various parameters,such as the apparent diffusion coefficient from the mono-exponential model,and the true diffusion coefficient,the pseudo-diffusion coefficient,and the perfusion fraction derived from the intravoxel incoherent motion model,along with distributed diffusion coefficient(DDC)andαfrom the stretched-exponential model(SEM),were measured.The parameters before and after chemotherapy were compared between positive and negative hepatic lymph node groups.A nomogram was constructed to predict the hepatic lymph node status.The reliability and agreement of the measurements were assessed using the coefficient of variation and intraclass correlation coefficient.RESULTS Multivariate analysis revealed that the pre-treatment DDC value and the short diameter of the largest lymph node after treatment were independent predictors of metastatic hepatic lymph nodes.A nomogram combining these two factors demonstrated excellent performance in distinguishing between benign and malignant lymph nodes in CRLM patients,with an area under the curve of 0.873.Furthermore,parameters from SEM showed substantial repeatability.CONCLUSION The developed nomogram,incorporating the pre-treatment DDC and the short axis of the largest lymph node,can be used to predict the presence of hepatic LNM in CRLM patients undergoing chemotherapy before surgery.This nomogram was proven to be more valuable,exhibiting superior diagnostic performance compared to quantitative parameters derived from multiple b values of DWI.The nomogram can serve as a preoperative assessment tool for determining the status of hepatic lymph nodes and aiding in the decision-making process for surgical treatment in CRLM patients.
基金Collaborative Innovation Project of University,Anhui Province(Grant No.GXXT-2022-088).
文摘Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.
基金funded by the National Natural Science Foundation of China (No. 42172308, No.51779018)the Youth Innovation Promotion Association CAS (No. 2022331)the Science and Technology Research and Development Program of China State Railway Group Co., Ltd. (No. J2022G002)。
文摘Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金the National Natural Science Foundation of China(No.12375282)the Key Laboratory of Computational Physical Sciences Project(Fudan University),Ministry of Education.
文摘Cs and I can migrate through fuel-cladding interfaces and accelerate the cladding corrosion process induced by the fuel-cladding chemical interaction.Cr coating has emerged as an important candidate for mitigating this chemical interaction.In this study,first-principles calculations were employed to investigate the diffusion behavior of Cs and I in the Cr bulk and grain boundaries to reveal the microscopic interaction mitigation mechanisms at the fuel-cladding interface.The interaction between these two fission products and the Cr coating were studied systematically,and the Cs and I temperature-dependent diffusion coefficients in Cr were obtained using Bocquet’s oversized solute-atom model and Le Claire’s nine-frequency model,respectively.The results showed that the Cs and I migration barriers were significantly lower than that of Cr,and the Cs and I diffusion coefficients were more than three orders of magnitude larger than the Cr self-diffusion coefficient within the temperature range of Generation-IV fast reactors(below 1000 K),demonstrating the strong penetration ability of Cs and I.Furthermore,Cs and I are more likely to diffuse along the grain boundary because of the generally low migration barriers,indicating that the grain boundary serves as a fast diffusion channel for Cs and I.
基金supported by the National Key Research and Development Program of China (No. 2022YFB1902700)the National Natural Science Foundation of China (No. 11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR1810)Fund of Innovation Center of Radiation Application (No. KFZC2020020402)Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University (No. NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology (No. 2022NRE-LH-02)。
文摘The most critical part of a neutron computed tomography(NCT) system is the image processing algorithm,which directly affects the quality and speed of the reconstructed images.Various types of noise in the system can degrade the quality of the reconstructed images.Therefore,to improve the quality of the reconstructed images of NCT systems,efficient image processing algorithms must be used.The anisotropic diffusion filtering(ADF) algorithm can not only effectively suppress the noise in the projection data,but also preserve the image edge structure information by reducing the diffusion at the image edges.Therefore,we propose the application of the ADF algorithm for NCT image reconstruction.To compare the performance of different algorithms in NCT systems,we reconstructed images using the ordered subset simultaneous algebraic reconstruction technique(OS-SART) algorithm with different regular terms as image processing algorithms.In the iterative reconstruction,we selected two image processing algorithms,the Total Variation and split Bregman solved total variation algorithms,for comparison with the performance of the ADF algorithm.Additionally,the filtered back-projection algorithm was used for comparison with an iterative algorithm.By reconstructing the projection data of the numerical and clock models,we compared and analyzed the effects of each algorithm applied in the NCT system.Based on the reconstruction results,OS-SART-ADF outperformed the other algorithms in terms of denoising,preserving the edge structure,and suppressing artifacts.For example,when the 3D Shepp–Logan was reconstructed at 25 views,the root mean square error of OS-SART-ADF was the smallest among the four iterative algorithms,at only 0.0292.The universal quality index,mean structural similarity,and correlation coefficient of the reconstructed image were the largest among all algorithms,with values of 0.9877,0.9878,and 0.9887,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
基金partially supported by the NSFC(11971179,12371205)partially supported by the National Key R&D Program of China(2021YFA1002900)+1 种基金the Guangdong Province Basic and Applied Basic Research Fund(2021A1515010235)the Guangzhou City Basic and Applied Basic Research Fund(2024A04J6336)。
文摘We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.
基金The financial support received from the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC1806002)National Natural Science Foundation of China(Grant Nos.42107174,42077241)is gratefully acknowledged.
文摘The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai (Grant No. 21ZR1444100)
文摘Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.
基金supported in part by the National Natural Science Foundation of China under Grants 61502162,61702175,and 61772184in part by the Fund of the State Key Laboratory of Geo-information Engineering under Grant SKLGIE2016-M-4-2+4 种基金in part by the Hunan Natural Science Foundation of China under Grant 2018JJ2059in part by the Key R&D Project of Hunan Province of China under Grant 2018GK2014in part by the Open Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN17-14Chinese Scholarship Council(CSC)through College of Computer Science and Electronic Engineering,Changsha,410082Hunan University with Grant CSC No.2018GXZ020784.
文摘Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field.