The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design...The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.展开更多
Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of...Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of heat fl ux was studied and the multi-directional energy fl ow diffusion mechanism was revealed. The results show that, due to the shielding action between the heat-source and the superposition effect of thermal fields, the insulating effect is best in multi-heat-source synthesis furnace. The heat emission effect is good outside the common area between heat-sources, but the heat storage is poor. Compared with the synthesis furnace that heat source is parallelly arranged, the furnace of stereoscopic arrangement has a more obvious heat stacking effect and better heat preservation effect, but the air permeability of heat source connecting regions is worse. In the case with the same ingredients, the resistance to thermal diffusion and mass diffusion is higher in heat source connecting regions.展开更多
We propose a new concept, the centre of energy, to study energy diffusion and heat conduction in a one-dimensional hard-point model. For the diatom model, we find an anomalous energy diffusion as (x2) - tβ with β ...We propose a new concept, the centre of energy, to study energy diffusion and heat conduction in a one-dimensional hard-point model. For the diatom model, we find an anomalous energy diffusion as (x2) - tβ with β = 1.33, which is independent of initial condition and mass rate. The present model can be viewed as the model composed by independent quasi-particles, the centre of energy. In this way, heat current can be calculated. Based on the theory of dynamic billiard, the divergent exponent of heat conductivity is estimated to be α = 0.33, which is confirmed by a simple numerical calculation.展开更多
A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rig...A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.展开更多
The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors...The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.展开更多
Aesthetics,referred frequently to as a philosophical term,has played a starring role in forming and evolving a number of aspects of human society,including arts,politics,economics,ethics,etc.Indeed,exploring and inves...Aesthetics,referred frequently to as a philosophical term,has played a starring role in forming and evolving a number of aspects of human society,including arts,politics,economics,ethics,etc.Indeed,exploring and investigating the aesthetic phenomena in the scientific field have aroused insightful research findings,which in turn has stimulated research interests in such a science-aesthetics field.In particular,better-evaluated aesthetic aspects of the materials field are expected to be uncovered upon the exceedingly-exposed fundamental breakthroughs in researching the basic structure and functionality of materials.In this report,we glimpse into the aesthetic simplicity of energy materials and comprehend specifically the mass transfer functionalities of key categories of energy materials through an intuitive and bottom-up approach.Our effort aspires to shed new lights on the functionality understanding and manipulation of functional materials in general.展开更多
Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal a...Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application.In this work,the porous Cu skeleton modified with Cu_(6)Sn_(5)layer is prepared via dealloying brass foil following a facile electroless process.The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density.The Cu_(6)Sn_(5)can react with lithium during the discharge process to form lithiophilic Li_(7)Sn_(2)in situ to promote Li-ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition.Therefore,more than 300 cycles at 1 mA cm^(−2)are achieved in the half-cell with an average Coulombic efficiency of 97.5%.The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm^(−2)with a small average hysteresis voltage of 16 mV.When coupled with LiFePO_(4)cathode,the full cell also maintains excellent cycling and rate performance.展开更多
We have studied the aggregation of particles on a hetero-substrate consisting of two different substrates A and B with finite surface barriers EAB and EBA between the AB and BA boundaries, respectively. With the diffu...We have studied the aggregation of particles on a hetero-substrate consisting of two different substrates A and B with finite surface barriers EAB and EBA between the AB and BA boundaries, respectively. With the diffusion energy limited aggregation (DELA) model, we find that the number of clusters and the mean radius of gyration of the clusters are dependent on the surface barriers EAB and EBA. For the case with a constant of EBA, a series of minima are summarized as EAB : (E0 - kBAEBA)/kAB with kAB and kBA being two integers, for main minima (kBA = kAB = 1) and two local minima (kBA = kAB and kBA = kAB + 1) between two neighbouring main minima.展开更多
Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding ...Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy ofT8 steel is 2.6× 10^5 J/mol between the temperature of 750 ℃ and 900 ℃ in microwave field, which is in the same order of conventional boriding.展开更多
The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen change...The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen changes no more before or after the precipitation of lamellar structure. The diffusion activation energy of carbon reduces remarkably with the increase of nitrogen content.It is believed that the lamellar carbide cell is harmful to the high temperature creep and impact properties of the alloy.展开更多
Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone d...Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.展开更多
The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under...The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.展开更多
This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadi...This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadizing agent has obvious catalytic effect on the rate of vanadization, which has been enchanced by 30%. The wear and corrosion resistance of vanadium carbide layer were prompted by the addition of rare earth to the agent. Through increasing vanadium potential of the agent, activating the surface of workpieces and decreasing the activation energy of diffusion of carbon, rare earth elements accelerate the rate of vanadization process.展开更多
Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from...Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.展开更多
Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning elec...Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.展开更多
Runaway electrons in tokamaks have been widely studied theoretically and experimentally. The runaway confinement time τ1 in ohmic and additionally heated tokamak plasmas presents an anomalous behavior when compared w...Runaway electrons in tokamaks have been widely studied theoretically and experimentally. The runaway confinement time τ1 in ohmic and additionally heated tokamak plasmas presents an anomalous behavior when compared with theoretical predictions based on neoclassical models. Runaway electrons have received lately a great attention due to several reasons: (a) the possibility to study electromagnetic turbulence by measuring the runaway flux fluctuations and its energy spectra, and ( b ) the runaway electrons are powerful diagnostics capable of yielding valuable information on the actual distribution function of fusion experiments.展开更多
Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing betw...Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing between trivial(no momentum exchange)and nontrivial interactions(significant energy redistribution).This distinction leads to a statistically equivalent model with weakened interactions.By applying this to FPUT-like models,we identify a unique double scaling of thermalization times.Crucially,our findings suggest the persistence of prethermalization in strong interactions.展开更多
The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bai...The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bainitic ferrite sheaves during the entire thickening process. The nucleation rate of intra-lath cementite precipitation on a dislocation is calculated based on of the degree of carbon supersaturation.Upper bainite and lower bainite are thus distinguished by the effective nucleation density and therefore a numerical criterion can be set to define the transition. The model is applied to Fe-xC-1Mn/2Mn/1 Mo ternary alloys. Results show that the transition temperature increases with bulk carbon content at lower carbon concentration but decreases in the higher carbon region. This prediction agrees very well with the experimental observations in Mn and Mo alloyed systems. Moreover, the highest transition temperature and the carbon content at which it occurs in the Fe-xC-2Mn system are in good agreement with reported experimental data. The inverse "V" shaped character of the carbon concentration-transition temperature curve indicates two opposite physical mechanisms operating at the same time. An analysis is carried out to provide an explanation.展开更多
The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibi...The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibium and the kinetics of temper embrittlement agrees well with those of nonequilibrium antimony segregation at grain boundary. Besides, the mechanism of nonequilibrium antimony segregation at grain boundary proved to be the most satisfactory one among the existing mechanisms to interpret the antimony induced embrittlement kinetics in the nick- el-chromiunl steel. Based on these, the activation energy and frequency factor of diffusion of antimony vacancy complexes were obtained according to the concept of critical time in nonequilibrium grain boundary segregation theory.展开更多
基金supported by the National Natural Science Foundation of China(21573059 and U1704251)the Overseas Expertise Introduction Project for Discipline Innovation(D17007)the Natural Science Foundation of Henan Province(212300410178)。
文摘The great challenges are remained in constructing graphite-based anode with well built-in structures to accelerate kinetics and enhance stability in the advanced K-ion batteries(KIBs).Here,we firstly report the design of expanded graphite cohered by N,B bridge-doping carbon patches(NBEG)for efficient K-ion adsorption/diffusion and long-term durability.It is the B co-doping that plays a crucial role in maximizing doping-site utilization of N atoms,balancing the adsorption-diffusion kinetics,and promoting the charge transfer between NBEG and K ions.Especially,the robust lamellar structure,suitable interlayer distance,and rich active sites of the designed NBEG favor the rapid ion/electron transfer pathways and high K-ion storage capacity.Consequently,even at a low N,B doping concentration(4.36 at%,2.07 at%),NBEG anode shows prominent electrochemical performance for KIBs,surpassing most of the advanced carbon-based anodes.Kinetic studies,density functional theory simulations,and in-situ Raman spectroscopy are further performed to reveal the K-ion storage mechanism and confirm the critical actions of co-doping B.This work offers the new methods for graphite-electrode design and the deeper insights into their energy storage mechanisms in KIBs.
基金Funded by the National Natural Science Foundation of China(No.51074123)the Scientif ic Research Program Funded by Shaanxi Provincial Education Department(No.12JK0785)+1 种基金the Cooperation Project of Industry,Academe and Research of Yulin City(2011)the Ph D Foundation of Xi’an University of Science and Technology(No.2011QDJ022)
文摘Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of heat fl ux was studied and the multi-directional energy fl ow diffusion mechanism was revealed. The results show that, due to the shielding action between the heat-source and the superposition effect of thermal fields, the insulating effect is best in multi-heat-source synthesis furnace. The heat emission effect is good outside the common area between heat-sources, but the heat storage is poor. Compared with the synthesis furnace that heat source is parallelly arranged, the furnace of stereoscopic arrangement has a more obvious heat stacking effect and better heat preservation effect, but the air permeability of heat source connecting regions is worse. In the case with the same ingredients, the resistance to thermal diffusion and mass diffusion is higher in heat source connecting regions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10605020)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y605376.)
文摘We propose a new concept, the centre of energy, to study energy diffusion and heat conduction in a one-dimensional hard-point model. For the diatom model, we find an anomalous energy diffusion as (x2) - tβ with β = 1.33, which is independent of initial condition and mass rate. The present model can be viewed as the model composed by independent quasi-particles, the centre of energy. In this way, heat current can be calculated. Based on the theory of dynamic billiard, the divergent exponent of heat conductivity is estimated to be α = 0.33, which is confirmed by a simple numerical calculation.
文摘A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50971005)
文摘The diffusion coefficients of several alloying elements(Al,Mo,Co,Ta,Ru,W,Cr,Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory.The correlation factors provided by the five-frequency model are explicitly calculated.The calculated diffusion coefficients show their excellent agreement with the available experimental data.Both the diffusion pre-factor(D 0) and the activation energy(Q) of impurity diffusion are obtained.The diffusion coefficients above 700 K are sorted in the following order:DAl〉DCr〉DCo〉DTa〉DMo〉DRu〉DW〉D Re.It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair(E 1).The value of E 2-E 1(E 2 is the solute diffusion energy) and the correlation factor each also show a positive correlation.The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
基金supported by the National Natural Science Foundation under Gran No.21403031Fundamental Research Funds for the Chinese Centra Universities under Grant No.ZYGX2014J088 and No.ZYGX2015Z003
文摘Aesthetics,referred frequently to as a philosophical term,has played a starring role in forming and evolving a number of aspects of human society,including arts,politics,economics,ethics,etc.Indeed,exploring and investigating the aesthetic phenomena in the scientific field have aroused insightful research findings,which in turn has stimulated research interests in such a science-aesthetics field.In particular,better-evaluated aesthetic aspects of the materials field are expected to be uncovered upon the exceedingly-exposed fundamental breakthroughs in researching the basic structure and functionality of materials.In this report,we glimpse into the aesthetic simplicity of energy materials and comprehend specifically the mass transfer functionalities of key categories of energy materials through an intuitive and bottom-up approach.Our effort aspires to shed new lights on the functionality understanding and manipulation of functional materials in general.
基金supported by the National Natural Science Foundation of China(52072173)the Jiangsu Province Outstanding Youth Fund(BK20200016)the International Cooperation of Jiangsu Province(SBZ2022000084)
文摘Lithium metal batteries are emerging as a strong candidate in the future energy storage market due to its extremely high energy density.However,the uncontrollable lithium dendrites and volume change of lithium metal anodes severely hinder its application.In this work,the porous Cu skeleton modified with Cu_(6)Sn_(5)layer is prepared via dealloying brass foil following a facile electroless process.The porous Cu skeleton with large specific surface area and high electronic conductivity effectively reduces the local current density.The Cu_(6)Sn_(5)can react with lithium during the discharge process to form lithiophilic Li_(7)Sn_(2)in situ to promote Li-ions transport and reduce the nucleation energy barrier of lithium to guide the uniform lithium deposition.Therefore,more than 300 cycles at 1 mA cm^(−2)are achieved in the half-cell with an average Coulombic efficiency of 97.5%.The symmetric cell shows a superior cycle life of more than 1000 h at 1 mA cm^(−2)with a small average hysteresis voltage of 16 mV.When coupled with LiFePO_(4)cathode,the full cell also maintains excellent cycling and rate performance.
基金supported by the Natural Science Foundation of Zhejiang province,China(Grant No Y607142)by the National Natural Science Foundation of China(Grant No 20771092)
文摘We have studied the aggregation of particles on a hetero-substrate consisting of two different substrates A and B with finite surface barriers EAB and EBA between the AB and BA boundaries, respectively. With the diffusion energy limited aggregation (DELA) model, we find that the number of clusters and the mean radius of gyration of the clusters are dependent on the surface barriers EAB and EBA. For the case with a constant of EBA, a series of minima are summarized as EAB : (E0 - kBAEBA)/kAB with kAB and kBA being two integers, for main minima (kBA = kAB = 1) and two local minima (kBA = kAB and kBA = kAB + 1) between two neighbouring main minima.
基金the National Natural Science Foundation of China(No.50371064)Natural Science Foundation of Hubei(No.2003ABA032)
文摘Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy ofT8 steel is 2.6× 10^5 J/mol between the temperature of 750 ℃ and 900 ℃ in microwave field, which is in the same order of conventional boriding.
文摘The volume fraction of the lamellar carbide cell in HK50 alloy may be increased with the in- crease of nitrogen content over 0.065%.The habit plane of l(?)mellar carbide is {111}_γ.The distribution of nitrogen changes no more before or after the precipitation of lamellar structure. The diffusion activation energy of carbon reduces remarkably with the increase of nitrogen content.It is believed that the lamellar carbide cell is harmful to the high temperature creep and impact properties of the alloy.
文摘Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.
基金Project(2005-383) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China
文摘The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.
文摘This paper investigates the effect of rare earth elements on the kinetic process, microstructure and mechanical properties of vanadization in borax bath. The results show that addition of rare earth elements to vanadizing agent has obvious catalytic effect on the rate of vanadization, which has been enchanced by 30%. The wear and corrosion resistance of vanadium carbide layer were prompted by the addition of rare earth to the agent. Through increasing vanadium potential of the agent, activating the surface of workpieces and decreasing the activation energy of diffusion of carbon, rare earth elements accelerate the rate of vanadization process.
文摘Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.
基金Project(51134003) supported by the National Natural Science Foundation of China
文摘Isothermal sintering experiments were performed on the 316 L stainless steel fiber felts with fiber diameters of 8 μm and20 μm. Surface morphologies of the sintered specimens were investigated by using scanning electron microscopy(SEM) and optical microscopy. The results show that the amount of the sintering necks and the relative densities of the fiber felt increase with the increasing of both the sintering temperature and the sintering time. And the activation energies estimated present a decline at high relative densities for both 8 μm and 20 μm fiber felts. Moreover, the sintering densification of the fiber felts is dominated by volume diffusion mechanism at low temperature and relative densities. As more grain boundaries are formed at higher temperature and relative density, grain boundary diffusion will also contribute to the densification of the specimen.
文摘Runaway electrons in tokamaks have been widely studied theoretically and experimentally. The runaway confinement time τ1 in ohmic and additionally heated tokamak plasmas presents an anomalous behavior when compared with theoretical predictions based on neoclassical models. Runaway electrons have received lately a great attention due to several reasons: (a) the possibility to study electromagnetic turbulence by measuring the runaway flux fluctuations and its energy spectra, and ( b ) the runaway electrons are powerful diagnostics capable of yielding valuable information on the actual distribution function of fusion experiments.
基金partially supported by the National Natural Science Foundation of China (Grant Nos.11925507,12047503,11975190,12247106,12005156,12247101 and 12465010)the support from the Youth Talent (Team)Project of Gansu Provincefrom the Innovation Fund from Department of Education of Gansu Province (Grant No.2023A-106)。
文摘Thermalization in many-body systems,especially with strong interactions,is a central question in physics.In this work,we present a novel framework for the thermalization of interacting wave systems,distinguishing between trivial(no momentum exchange)and nontrivial interactions(significant energy redistribution).This distinction leads to a statistically equivalent model with weakened interactions.By applying this to FPUT-like models,we identify a unique double scaling of thermalization times.Crucially,our findings suggest the persistence of prethermalization in strong interactions.
基金supported by the National Natural Science Foundation of China (Grant No. 51471094)The financial support provided by China Scholarship Council
文摘The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bainitic ferrite sheaves during the entire thickening process. The nucleation rate of intra-lath cementite precipitation on a dislocation is calculated based on of the degree of carbon supersaturation.Upper bainite and lower bainite are thus distinguished by the effective nucleation density and therefore a numerical criterion can be set to define the transition. The model is applied to Fe-xC-1Mn/2Mn/1 Mo ternary alloys. Results show that the transition temperature increases with bulk carbon content at lower carbon concentration but decreases in the higher carbon region. This prediction agrees very well with the experimental observations in Mn and Mo alloyed systems. Moreover, the highest transition temperature and the carbon content at which it occurs in the Fe-xC-2Mn system are in good agreement with reported experimental data. The inverse "V" shaped character of the carbon concentration-transition temperature curve indicates two opposite physical mechanisms operating at the same time. An analysis is carried out to provide an explanation.
基金Item Sponsored by National Natural Science Foundation of China(51001011)
文摘The antimony segregation at grain boundary was observed and the temper embrittlement in titanium-doped nickel-chromium steel was analyzed. It is concluded that the antimony segregation at grain boundary is nonequilibium and the kinetics of temper embrittlement agrees well with those of nonequilibrium antimony segregation at grain boundary. Besides, the mechanism of nonequilibrium antimony segregation at grain boundary proved to be the most satisfactory one among the existing mechanisms to interpret the antimony induced embrittlement kinetics in the nick- el-chromiunl steel. Based on these, the activation energy and frequency factor of diffusion of antimony vacancy complexes were obtained according to the concept of critical time in nonequilibrium grain boundary segregation theory.