The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were i...The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods.展开更多
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch...Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.展开更多
The in vitro digestion models mimicking the gastrointestinal(GI)tract of general population and lipid indigestion patients(with lower levels of bile salts or pancreatic lipase)were selected to investigate whether diac...The in vitro digestion models mimicking the gastrointestinal(GI)tract of general population and lipid indigestion patients(with lower levels of bile salts or pancreatic lipase)were selected to investigate whether diacylglycerols(DAGs)are potential good lipid sources for these patients.Linseed oil-based DAG(LD)and linseed oil(LT)were selected.LD-based emulsion((83.74±1.23)%)had higher lipolysis degree than LT-based emulsion((74.47±1.16)%)when monitoring the GI tract of normal population as previously reported.Indigestion conditions seriously decreased the digestive degree of LT-based emulsion((40.23±2.48)%-(66.50±3.70)%)while showed less influence on LD-based emulsion((64.18±2.41)%-(81.85±3.45)%).As opposed to LT-based emulsion,LD-based emulsion exhibited preference for releasing unsaturated fatty acids(especially oleic acid andα-linolenic acid)due to their different glycerolipid compositions.LD-based emulsion showed potential for providing lipids and nutrients(including essential fatty acids)for lipid indigestion patients.展开更多
Dry-fermented sausages are a good source of bioactive peptides,whose stability against gastrointestinal(GI)digestion determines their bioaccessibility.This study focused on evaluating the effect of peptide extracts fr...Dry-fermented sausages are a good source of bioactive peptides,whose stability against gastrointestinal(GI)digestion determines their bioaccessibility.This study focused on evaluating the effect of peptide extracts from sausages fermented with Staphylococcus simulans QB7 during in vitro simulated GI digestion,including peptide profiles and antioxidant and anti-inflammatory activities.Peptides present in sausages were degraded during digestion,with molecular weight reduced from>12 kDa to<1.5 kDa.Besides,the content of amino acids increased from 381.15 to 527.07 mg/g,especially tyrosine being found only after GI digestion.The anti-inflammatory activities were increased after GI digestion,however,the changes in antioxidant activities were the opposite.A total number of 255,252 and 386 peptide sequences were identified in undigested,peptic-digested and GI-digested samples,respectively.PeptideRanker,BIOPEP-UWM and admetSAR were used to further predict the functional properties and intestinal absorption of the identified peptide sequences from GI digestion.Finally,18 peptides were discovered to possess either antioxidant or anti-inflammatory capacities.展开更多
Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mi...Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mice model was used to explore the allergenicity of shrimp protein sample(SPS)and their gastric and gastrointestinal digestion products(GDS/GIDS).As compared with the SPS groups,the GDS/GIDS groups caused lower specific immunoglobulins(Ig E/Ig G1)levels(P<0.05),but higher than the control groups,indicating that the digestion products sensitized the mice.Meanwhile,spleen index,mouse mast cell protease-1(m MCP-1)concentration and proportion of degranulated mast cells were significantly reduced in the GDS/GIDS groups(P<0.05);simultaneously,allergic symptoms,vascular permeability and histopathological changes of tissues were alleviated.Nevertheless,the allergenicity of digestion products cannot be eliminated and still cause systemic allergic reactions in mice.The study showed that the digestion products of shrimp still had high sensitizing and eliciting capacity.展开更多
An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(...An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.展开更多
[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yin...[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yingshan,Huanggang,Hubei Province were selected as the research object,and their digestion in vitro was simulated.The total polyphenol content was determined by Folin-phenol reagent colorimetric method,and the DPPH radical scavenging activity and total antioxidant activity were determined.[Results]After simulated gastrointestinal digestion in vitro,the polyphenol content and antioxidant activity of coarse old leaf tea soup showed a downward trend.After gastrointestinal digestion,the polyphenol content in tea infusion separately decreased by 31.8%and 8.5%;the scavenging rate of DPPH free radical was 97%before digestion,decreased to 92%after gastric digestion and 65%after intestinal digestion,which decreased by 5%and 27%,respectively;after gastrointestinal digestion,the total antioxidant capacity of tea soup decreased by 4.7%and 3.1%,respectively.[Conclusions]This study provided a reference for the development and application of coarse old leaves of Yingshan Yunwu tea,and provided a reference for the nutritional value evaluation and comprehensive utilization of coarse old leaves,so as to make the best use of coarse tea leaves and reduce the waste of resources.展开更多
Chestnut is a high nutritional value food that has been widely used as a tonic in traditional Chinese medicine.As an emerging functional food ingredient,Chinese chestnuts are rich in a range of bioactive nutrients suc...Chestnut is a high nutritional value food that has been widely used as a tonic in traditional Chinese medicine.As an emerging functional food ingredient,Chinese chestnuts are rich in a range of bioactive nutrients such as starch,dietary fiber,fat,protein,trace metal element and vitamins A,B,C,D and other nutrients.In our study,Chinese chestnut powder(CCP)were added into bread formulation at 2%-6%levels(based on flour weight)to produce fresh bread with enhanced anti-staling characteristics and starch digestion inhibitory ability.The texture properties,retrogradation enthalpy,water distribution,and estimated glycemic index(eGI)of wheat bread containing CCP as a functional additive were also investigated.The results showed that incorporation of CCP apparently affected bread texture,resulting in increased hardness,as well as decreased the specific volume of wheat bread.These influences were generally proportional to the amount of CCP used.It was found that adding too much CCP resulted in a dark red color,showing increased significantly higher total color difference(ΔE)and L values.Conversely,addition of CCP significantly reduced starch digestion rate and digestion extent in bread,and the reduction degree was positively related to the amount of CCP applied.The greatest reduction in eGI value from 79.40(control)to 75.02(6%CPP bread)was observed.Meanwhile,the content of resistant starch of 6%CPP bread was about 1.36 times higher than that of control bread.CCP also reduced crumb water loss and drove the water shift from the bound to the mobile state after stored for 7 days.The retrogradation enthalpy analyses further confirmed that CCP inhibited starch retrogradation and recrystallization.These results suggested that Chinese chestnut powder could be incorporated into fresh bread to provide health functions,such as lowering potential glycaemic response and improving anti-staling characteristics of bread.展开更多
Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,...Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,which could efficiently utilize the Fe-and Al-containing minerals present in goethitic bauxite.In this work,the interactions between anatase or kaolinite with goethite during various Bayer digestion processes were investigated using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).The results showed that anatase and kaolinite hindered the transformation of goethite.Anatase exerted more significant effects than kaolinite due to the dense sodium titanate layer on the goethite surface after reacting with the sodium aluminate solution.Adding the reductant hydrazine hydrate could eliminate the retarding effect by inducing the transformation of goethite into magnetite.In this process,titanium was embedded into the magnetite lattice to form Ti-containing magnetite.Furthermore,the weakening of the interaction between magnetite and sodium aluminosilicate hydrate reduced the influence of kaolinite.As a validation of the above results,the reductive Bayer method resulted in the transformation of goethite into goethitic bauxite with 98.87% relative alumina digestion rate.The obtained red mud with 72.99wt% Fe2O3could be further utilized in the steel industry.This work provides a clear understanding of the transformative effects of Ti-and Si-containing minerals on iron mineral transformation and aids the comprehensive use of iron and aluminum in goethitic bauxite subjected to the reductive Bayer method.展开更多
Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.I...Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.展开更多
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi...This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.展开更多
Hydrochar prepared with four typical biowastes,pine wood,food waste,digested sewage sludge,and Chlorella were applied for the promotion of anaerobic digestion.The gas production and substrate composition were analyzed...Hydrochar prepared with four typical biowastes,pine wood,food waste,digested sewage sludge,and Chlorella were applied for the promotion of anaerobic digestion.The gas production and substrate composition were analyzed associated with the hydrochar characteristics.The results suggested that Chlorella hydrochar(C-C)showed the highest cumulative yield of methane(approximately 345 mL)with high total organic carbon(TOC)removal efficiency and low volatile fatty acids(VAFs)concentration.Especially,food waste hydrochar(F-C)showed a poor effect on anaerobic digestion and aroused 1.4–1.6 g/L accumulation of VAFs,in which the toxic components may account for the low efficiency.The C-C and sludge hydrochar(S-C)may develop direct interspecific electron transport(DIET)to facilitate the generation of methane by both surface groups and conductivity of the body structure,unlike pinewood hydrochar(P-C),which mainly depended on the aromatic matrix structure of hydrochar body.This work suggested that C-C can be the best candidate for the facilitation of anaerobic digestion,and N-containing biowaste like algae and lignocellulose like pine wood may establish different DIET pathways based on the physicochemical characteristics of hydrochar.展开更多
Energy is a crucial material for the development of our economy.Access to sufficient energy remains a major concern for developing countries,particularly those in sub-Saharan Africa.The major challenge lies in access ...Energy is a crucial material for the development of our economy.Access to sufficient energy remains a major concern for developing countries,particularly those in sub-Saharan Africa.The major challenge lies in access to clean,environmentally friendly,quality and low-cost energy in different households in our municipalities.To cope with this vast energy gap,many households are dependent on fossil fuels.In Cameroon,the consumption of wood for the supply of energy is increasing by 4%per year.Overall,approximately 80%of households in Cameroon depend on woody biomass as the sole main source of energy supply in Cameroon and demand is growing over time.In view of the climatic variations that our countries,particularly Cameroon,undergo through deforestation,the use of wood as a source of energy is expensive and harmful to the environment,hence the urgency of replacing wood with renewable energy.Biogas is one of the most versatile sources of renewable energy.On an industrial scale,it is important to automate the process control.The main objective of the present work is to model the anaerobic digestion of coffee and cocoa hulls using the particle swarm optimisation method.Pretreatment using the organosolv process was done.This resulted in 48%lignin removal and 22%cellulose increase.For the pretreated biomass,the maximum production rate was 21 NmLCH4 per day with a biomethane yield of 90 NmLCH4/gVS.This represents an enhancement of 117%in biomethane yield.A positive flammability test was recorded after the 10th day of retention time.Moreover,the data collected during anaerobic digestion allowed implementation of a two-phase mathematical model.The thirteen parameters of the model were estimated with particle swarm optimisation method in Matlab.The model was able to simulate the biomethane production kinetics and variation of volatile fatty acid concentration.展开更多
[Objectives] To establish a method for determining the lead content in lime-preserved eggs, to provide a theoretical basis for the quality control of production enterprises and the sampling and testing of supervision ...[Objectives] To establish a method for determining the lead content in lime-preserved eggs, to provide a theoretical basis for the quality control of production enterprises and the sampling and testing of supervision departments. [Methods] The lead content in lime-preserved eggs was measured by the microwave digestion and flame atomic absorption spectroscopy. [Results] The method had a correlation coefficient of r2=0.998 in the injection concentration range of 0-4 mg/L. The detection limit of the method was 0.008 2 mg/kg. In the range of 0.2 to 1.0 mg/kg addition concentration, the recovery rate of the method was 92.5%-108.0%, and the relative standard deviation(RSD) was <5%. [Conclusions] This method is accurate and reliable, simple and efficient, and is suitable for the detection of lead in lime-preserved eggs.展开更多
Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina productio...Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.展开更多
[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by co...[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.展开更多
To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. Th...To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.展开更多
In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet...In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.展开更多
[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the acc...[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.展开更多
基金the Program of State Key Laboratory of Food Science and Technology,Nanchang University (SKLF-ZZB-202119)。
文摘The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods.
基金supported by the Province Natural Science Foundation of Hunan,China (2022JJ5410)Special Project on Modern Agricultural Industrial Technology System Construction of Hunan,China (2022-67)。
文摘Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine.
基金National Key R&D Program of China(2022YFC2805100)National Science Fund for Key Program of National Natural Science Foundation of China(31930084)+3 种基金National Science Fund for Distinguished Young Scholars of China(31725022)China Agriculture Research System(CARS-18-ZJ0503)Guangdong Provincial Key R&D Programme(2022B0202010002)Science and Technology Innovation Project of Foshan City(FS0AAKJ919-4402-0013)。
文摘The in vitro digestion models mimicking the gastrointestinal(GI)tract of general population and lipid indigestion patients(with lower levels of bile salts or pancreatic lipase)were selected to investigate whether diacylglycerols(DAGs)are potential good lipid sources for these patients.Linseed oil-based DAG(LD)and linseed oil(LT)were selected.LD-based emulsion((83.74±1.23)%)had higher lipolysis degree than LT-based emulsion((74.47±1.16)%)when monitoring the GI tract of normal population as previously reported.Indigestion conditions seriously decreased the digestive degree of LT-based emulsion((40.23±2.48)%-(66.50±3.70)%)while showed less influence on LD-based emulsion((64.18±2.41)%-(81.85±3.45)%).As opposed to LT-based emulsion,LD-based emulsion exhibited preference for releasing unsaturated fatty acids(especially oleic acid andα-linolenic acid)due to their different glycerolipid compositions.LD-based emulsion showed potential for providing lipids and nutrients(including essential fatty acids)for lipid indigestion patients.
基金financially supported by the National Natural Science Foundation of China (32272359)Natural Science and Engineering Research Council of Canada (NSERC,RGPIN-2018-04680)the scholarship from the China Scholarship Council (202106670005)。
文摘Dry-fermented sausages are a good source of bioactive peptides,whose stability against gastrointestinal(GI)digestion determines their bioaccessibility.This study focused on evaluating the effect of peptide extracts from sausages fermented with Staphylococcus simulans QB7 during in vitro simulated GI digestion,including peptide profiles and antioxidant and anti-inflammatory activities.Peptides present in sausages were degraded during digestion,with molecular weight reduced from>12 kDa to<1.5 kDa.Besides,the content of amino acids increased from 381.15 to 527.07 mg/g,especially tyrosine being found only after GI digestion.The anti-inflammatory activities were increased after GI digestion,however,the changes in antioxidant activities were the opposite.A total number of 255,252 and 386 peptide sequences were identified in undigested,peptic-digested and GI-digested samples,respectively.PeptideRanker,BIOPEP-UWM and admetSAR were used to further predict the functional properties and intestinal absorption of the identified peptide sequences from GI digestion.Finally,18 peptides were discovered to possess either antioxidant or anti-inflammatory capacities.
基金financially supported by the National Natural Science Foundation of China(32022067)the Dalian Sci-Tech Talent Innovation Support Program(2022RY04)。
文摘Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mice model was used to explore the allergenicity of shrimp protein sample(SPS)and their gastric and gastrointestinal digestion products(GDS/GIDS).As compared with the SPS groups,the GDS/GIDS groups caused lower specific immunoglobulins(Ig E/Ig G1)levels(P<0.05),but higher than the control groups,indicating that the digestion products sensitized the mice.Meanwhile,spleen index,mouse mast cell protease-1(m MCP-1)concentration and proportion of degranulated mast cells were significantly reduced in the GDS/GIDS groups(P<0.05);simultaneously,allergic symptoms,vascular permeability and histopathological changes of tissues were alleviated.Nevertheless,the allergenicity of digestion products cannot be eliminated and still cause systemic allergic reactions in mice.The study showed that the digestion products of shrimp still had high sensitizing and eliciting capacity.
基金This work was supported by the National Natural Science Fund of China(32001622)the Guangdong Basic and Applied Research Foundation(2021A1515011060)+1 种基金the Fundamental and Applied Basic Research Fund for Young Scholars of Guangdong Province(2019A1515110823)the Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Foods(2021B1212040013).
文摘An isotope dilution ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was developed to simultaneously detect two typical kinds ofα,β-unsaturated aldehydes,namely 4-hydroxy-2-hexenal(4-HHE)and 4-hydroxy-2-nonenal(4-HNE),in foods.The proposed method exhibited a linear range of 10-1000 ng/mL with a limit of detection of 0.1-2.0 ng/g and a limit of quantification of 0.3-5.0 ng/g.The recovery rates of these typical toxic aldehydes(i.e.,4-HHE,4-HNE)and their d3-labeled analogues were 91.54%-105.12%with a low matrix effect.Furthermore,this proposed method was successfully applied to a real frying system and a simulated digestion system,wherein the contents of 4-HHE and 4-HNE were determined for both.Overall,the obtained results provide strong support for further research into the production of 4-HHE and 4-HNE resulting from foods during oil digestion and frying.
基金Supported by High-level Training Project of Huanggang Normal University in 2021(202108504).
文摘[Objectives]To explore the change rule of polyphenol content and antioxidant activity of coarse old leaves of Yingshan Yunwu Tea in the process of human digestion.[Methods]The coarse and old leaves of Yunwu tea in Yingshan,Huanggang,Hubei Province were selected as the research object,and their digestion in vitro was simulated.The total polyphenol content was determined by Folin-phenol reagent colorimetric method,and the DPPH radical scavenging activity and total antioxidant activity were determined.[Results]After simulated gastrointestinal digestion in vitro,the polyphenol content and antioxidant activity of coarse old leaf tea soup showed a downward trend.After gastrointestinal digestion,the polyphenol content in tea infusion separately decreased by 31.8%and 8.5%;the scavenging rate of DPPH free radical was 97%before digestion,decreased to 92%after gastric digestion and 65%after intestinal digestion,which decreased by 5%and 27%,respectively;after gastrointestinal digestion,the total antioxidant capacity of tea soup decreased by 4.7%and 3.1%,respectively.[Conclusions]This study provided a reference for the development and application of coarse old leaves of Yingshan Yunwu tea,and provided a reference for the nutritional value evaluation and comprehensive utilization of coarse old leaves,so as to make the best use of coarse tea leaves and reduce the waste of resources.
基金This research has been financially supported by National Key R&D Program of China(2019YFD1002300)Open Project Program of Grain,Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province,Henan University of Technology(GO202216)+1 种基金Doctor Foundation of Henan University of Technology(2019BS057)Cultivation Programme for Young Backbone Teachers in Henan University of Technology for financial support(21420187).
文摘Chestnut is a high nutritional value food that has been widely used as a tonic in traditional Chinese medicine.As an emerging functional food ingredient,Chinese chestnuts are rich in a range of bioactive nutrients such as starch,dietary fiber,fat,protein,trace metal element and vitamins A,B,C,D and other nutrients.In our study,Chinese chestnut powder(CCP)were added into bread formulation at 2%-6%levels(based on flour weight)to produce fresh bread with enhanced anti-staling characteristics and starch digestion inhibitory ability.The texture properties,retrogradation enthalpy,water distribution,and estimated glycemic index(eGI)of wheat bread containing CCP as a functional additive were also investigated.The results showed that incorporation of CCP apparently affected bread texture,resulting in increased hardness,as well as decreased the specific volume of wheat bread.These influences were generally proportional to the amount of CCP used.It was found that adding too much CCP resulted in a dark red color,showing increased significantly higher total color difference(ΔE)and L values.Conversely,addition of CCP significantly reduced starch digestion rate and digestion extent in bread,and the reduction degree was positively related to the amount of CCP applied.The greatest reduction in eGI value from 79.40(control)to 75.02(6%CPP bread)was observed.Meanwhile,the content of resistant starch of 6%CPP bread was about 1.36 times higher than that of control bread.CCP also reduced crumb water loss and drove the water shift from the bound to the mobile state after stored for 7 days.The retrogradation enthalpy analyses further confirmed that CCP inhibited starch retrogradation and recrystallization.These results suggested that Chinese chestnut powder could be incorporated into fresh bread to provide health functions,such as lowering potential glycaemic response and improving anti-staling characteristics of bread.
基金the financial support provided by the National Natural Science Foundation of China (No.52104353)the National Key Research and Development Program of China (No.2022YFC3900900)。
文摘Goethitic bauxite is a widely used raw material in the alumina industry.It is an essential prerequisite to clarify the effect of Ti-and Si-containing minerals on goethite transformation in the Bayer digestion process,which could efficiently utilize the Fe-and Al-containing minerals present in goethitic bauxite.In this work,the interactions between anatase or kaolinite with goethite during various Bayer digestion processes were investigated using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).The results showed that anatase and kaolinite hindered the transformation of goethite.Anatase exerted more significant effects than kaolinite due to the dense sodium titanate layer on the goethite surface after reacting with the sodium aluminate solution.Adding the reductant hydrazine hydrate could eliminate the retarding effect by inducing the transformation of goethite into magnetite.In this process,titanium was embedded into the magnetite lattice to form Ti-containing magnetite.Furthermore,the weakening of the interaction between magnetite and sodium aluminosilicate hydrate reduced the influence of kaolinite.As a validation of the above results,the reductive Bayer method resulted in the transformation of goethite into goethitic bauxite with 98.87% relative alumina digestion rate.The obtained red mud with 72.99wt% Fe2O3could be further utilized in the steel industry.This work provides a clear understanding of the transformative effects of Ti-and Si-containing minerals on iron mineral transformation and aids the comprehensive use of iron and aluminum in goethitic bauxite subjected to the reductive Bayer method.
基金the National Natural Science Foundation of China(31701546)the Fundamental Research Funds for the Central Universities of China(2019ZD40)+5 种基金the 111 Project(B17018)for financial supportPearl River Talent Recruitment Program of Guangdong Province(2017GC010229)the Pearl River Nova Program of Guangzhou(201906010079)the National Natural Science Foundation of China(32001691)the special fund for scientific innovation strategyconstruction of high-level academy of agriculture science(R2019YJYB1001)the Application-oriented Projects of Guangdong Province(2017B020232002)。
文摘Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria.
基金supported by the Opening Project of Key Laboratory of Agricultural Renewable Resource Utilization Technology (No.HLJHDNY2104)Funding for the National Natural Science Foundation of China (NSFC U21A20162)+2 种基金Heilongjiang Postdoctoral Financial Assistance (LBH-Z21042)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2020106)Sichuan Science and Technology Program (2022NSFSC1162).
文摘Hydrochar prepared with four typical biowastes,pine wood,food waste,digested sewage sludge,and Chlorella were applied for the promotion of anaerobic digestion.The gas production and substrate composition were analyzed associated with the hydrochar characteristics.The results suggested that Chlorella hydrochar(C-C)showed the highest cumulative yield of methane(approximately 345 mL)with high total organic carbon(TOC)removal efficiency and low volatile fatty acids(VAFs)concentration.Especially,food waste hydrochar(F-C)showed a poor effect on anaerobic digestion and aroused 1.4–1.6 g/L accumulation of VAFs,in which the toxic components may account for the low efficiency.The C-C and sludge hydrochar(S-C)may develop direct interspecific electron transport(DIET)to facilitate the generation of methane by both surface groups and conductivity of the body structure,unlike pinewood hydrochar(P-C),which mainly depended on the aromatic matrix structure of hydrochar body.This work suggested that C-C can be the best candidate for the facilitation of anaerobic digestion,and N-containing biowaste like algae and lignocellulose like pine wood may establish different DIET pathways based on the physicochemical characteristics of hydrochar.
文摘Energy is a crucial material for the development of our economy.Access to sufficient energy remains a major concern for developing countries,particularly those in sub-Saharan Africa.The major challenge lies in access to clean,environmentally friendly,quality and low-cost energy in different households in our municipalities.To cope with this vast energy gap,many households are dependent on fossil fuels.In Cameroon,the consumption of wood for the supply of energy is increasing by 4%per year.Overall,approximately 80%of households in Cameroon depend on woody biomass as the sole main source of energy supply in Cameroon and demand is growing over time.In view of the climatic variations that our countries,particularly Cameroon,undergo through deforestation,the use of wood as a source of energy is expensive and harmful to the environment,hence the urgency of replacing wood with renewable energy.Biogas is one of the most versatile sources of renewable energy.On an industrial scale,it is important to automate the process control.The main objective of the present work is to model the anaerobic digestion of coffee and cocoa hulls using the particle swarm optimisation method.Pretreatment using the organosolv process was done.This resulted in 48%lignin removal and 22%cellulose increase.For the pretreated biomass,the maximum production rate was 21 NmLCH4 per day with a biomethane yield of 90 NmLCH4/gVS.This represents an enhancement of 117%in biomethane yield.A positive flammability test was recorded after the 10th day of retention time.Moreover,the data collected during anaerobic digestion allowed implementation of a two-phase mathematical model.The thirteen parameters of the model were estimated with particle swarm optimisation method in Matlab.The model was able to simulate the biomethane production kinetics and variation of volatile fatty acid concentration.
文摘[Objectives] To establish a method for determining the lead content in lime-preserved eggs, to provide a theoretical basis for the quality control of production enterprises and the sampling and testing of supervision departments. [Methods] The lead content in lime-preserved eggs was measured by the microwave digestion and flame atomic absorption spectroscopy. [Results] The method had a correlation coefficient of r2=0.998 in the injection concentration range of 0-4 mg/L. The detection limit of the method was 0.008 2 mg/kg. In the range of 0.2 to 1.0 mg/kg addition concentration, the recovery rate of the method was 92.5%-108.0%, and the relative standard deviation(RSD) was <5%. [Conclusions] This method is accurate and reliable, simple and efficient, and is suitable for the detection of lead in lime-preserved eggs.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2014JZ01 and2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.
基金Project(51204054)supported by the National Natural Science Foundation of ChinaProject(N110402012)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.
基金Supported by International Science&Technology Cooperation Program of China(2013DFA61260)Sub-project of National Science and Technology Planning in Rural Areas during the 12th Five-year Plan(2011BAD36B01)~~
文摘In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.
基金National Basic Research Program of China (973 Program) (2009CB724700,2011CBA00800)National Natural Foundation of China (31101269)+4 种基金Scienc & Technology Plotform Construction Programof Jiangxi Province (2010DTZ01900)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsNatural Science Foundation of Jiangsu Department of Education (07KJD350034)High-level Talents Foundation of Jiangsu University (07JDG020)Supported by International Foundation for Science (F 4930-1)~~
文摘[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.