Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions...Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.展开更多
It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shr...Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shrub-grasses (G) separately in a subtropical forest area in Nanjing, China. Both upward and downward photographs were taken with a digital camera in 72 quadrats (10 m × 10 m each). Fifteen models were established and validated. Models jointly using both T and G performed better than those using the T and G separately. The best model, TG = T + G- 1.134 × T × G- 0.025 (R2 = 0.9115, P < 0.01, root mean squared error = 0.0789), is recommended for application. This model provides a good way to obtain total forest VFC values through taking tree and shrub-grass photos on ground below tree canopy rather than above tree canopy.展开更多
Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,pr...Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,providing a more scientific and macroscopic way of research.The key to refinement design is to refine the spatial design process and the spatial improvement strategy system.Taking the ancient city of Zhaoyu in Qixian County,Shanxi Province as an example,(1)based on obtaining the integrated data of the ancient city through the drone tilt photography,the style and landscape of the ancient city are modeled;(2)the point cloud data with spatial information is imported into the point cloud analysis platform and the data analysis is carried out from the overall macroscopic style of the ancient city to the refinement level,which results in the formation of a more intuitive landscape design scheme,thus improving the precision and practicability of the landscape design;(3)Based on spatial big data,it starts from the spatial aggregation level,spatial distribution characteristics and other evaluation index system to achieve the refinement analysis of the site.Digital technology and methods are used throughout the process to explore the refined design path.展开更多
Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest ...Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.展开更多
The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification...The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.展开更多
Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can conf...Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can confirm the diagnosis but the need for further identification of forensic diagnosis of cases of DTS scan and three-dimensional reconstruction in order to control the study. Results: 1. The reconstructed images after DTS scanning showed that the knee joint fractures were clearly diagnosed, and the detection rate of 28 knee joint fractures was 92.86%. 2. DTS scanning could clearly detect the fresh knee joint fracture's fracture line, corresponding line and broken bones. For the old fracture, DTS scanning could clearly show the condition of the fracture end's healing. Conclusions: The technique is of great value in the diagnosis of knee joint fracture, especially in the examination of complex structure, thick body and review of internal fixation after fracture.展开更多
X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the ...X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.展开更多
Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data f...Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis.展开更多
Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have comp...Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have compared image quality, radiation exposure, and bone removal between neuro-digital subtraction angiography and DE-CTA. However, the number of cases was relatively small. The present study examined 300 suspected cases of cerebrovascular disease and observed the methods and duration of post-processing, examination time, and data volume. Results demonstrated similar image quality between the two methods, but lower radiation doses and shorter examination time in DE-CTA. DE-CTA allowed for faster and more stable scanning performance and post-processing methods, facilitating accurate and direct diagnosis of cerebrovascular disease.展开更多
In the following work of research, we shall present the results of a study on forms of digital photographic socialization as carried out by the so-called "digital natives" in order to explore their competence in man...In the following work of research, we shall present the results of a study on forms of digital photographic socialization as carried out by the so-called "digital natives" in order to explore their competence in managing digital photographic output and cultural practices. This shall be done under the following categories of analysis: snapshot, organization, socialization, reception, privacy, and copyrights in digital photography. The study explores the forms of digital photography production, technical problems of photographic management and the final uses that digital photographers give to their photos in terms of web tools 2.0, mobile telephones and social networks. Digital photography technology, compact cameras, mobile phones with cameras, specialized websites in photography and the lnternet generate new forms of production and emerging styles of digital photographic socialization. The study is carried out using a defined sample of university students, those digital natives who create and use digital photography.展开更多
Background Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and tech-no...Background Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and tech-nologies.Digital twins may allow healthcare organizations to determine methods of improving medical processes,enhancing patient experience,lowering operating expenses,and extending the value of care.During the present COVID-19 pandemic,various medical devices,such as X-rays and CT scan machines and processes,are constantly being used to collect and analyze medical images.When collecting and processing an extensive volume of data in the form of images,machines and processes sometimes suffer from system failures,creating critical issues for hospitals and patients.Methods To address this,we introduce a digital-twin-based smart healthcare system in-tegrated with medical devices to collect information regarding the current health condition,configuration,and maintenance history of the device/machine/system.Furthermore,medical images,that is,X-rays,are analyzed by using a deep-learning model to detect the infection of COVID-19.The designed system is based on the cascade recurrent convolution neural network(RCNN)architecture.In this architecture,the detector stages are deeper and more sequentially selective against small and close false positives.This architecture is a multi-stage extension of the RCNN model and sequentially trained using the output of one stage for training the other.At each stage,the bounding boxes are adjusted to locate a suitable value of the nearest false positives during the training of the different stages.In this manner,the arrangement of detectors is adjusted to increase the intersection over union,overcoming the problem of overfitting.We train the model by using X-ray images as the model was previously trained on another dataset.Results The developed system achieves good accuracy during the detection phase of COVID-19.The experimental outcomes reveal the efficiency of the detection architecture,which yields a mean average precision rate of 0.94.展开更多
In aerial photography, the primary factor is terrain undulation. However, most of the external aerial photography software used for aerial photography design do not take terrain undulation influence into consideration...In aerial photography, the primary factor is terrain undulation. However, most of the external aerial photography software used for aerial photography design do not take terrain undulation influence into consideration. Therefore, the design result has comparative randomicity and "gaps" are expected. An aerial photography design system is developed by analyzing the terrain undulation influence to the design result with DEM data so that the forward overlap and side overlap can be justified according to the block terrain undulation to meet specifications or standards. The data designed by this system is compared with the real flying data. The results show that making use of DEM to assist in aerial photography design can ensure that the designed result fits the real terrain better.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to i...The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.展开更多
Two speckle patterns are recorded using a video cameracorresponding to undisplaced and displaced states into the memory ofa computer. After one pattern is added to another, the displacementof the measured points can b...Two speckle patterns are recorded using a video cameracorresponding to undisplaced and displaced states into the memory ofa computer. After one pattern is added to another, the displacementof the measured points can be calculated by using the Fouriertransform. The expression of displacement field is deduced fornon-uniform displacement, and as an example, a rotatanle disc istested for illustration. The re- sults prove that the present methodis promising.展开更多
Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advan...Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advanced imaging modalities such as refraction-based methods,it is critical that developed phantoms capture the biological details seen in clinical precancerous and cancerous cases while minimizing artifacts that may be caused due to phantom production.This work presents the fabrication of a breast tissue imaging phantom from cadaveric breast tissue suitable for use in both transmission and refraction-enhanced imaging systems.Methods:Human cancer cell tumors were grown orthotopically in nude athymic mice and implanted into the fixed tissue while maintaining the native tumor/adipose tissue interface.Results:The resulting human–murine tissue hybrid phantom was mounted on a clear acrylic housing for absorption and refraction X-ray imaging.Digital breast tomosynthesis was also performed.Conclusion:Both attenuation-based imaging and refraction-based imaging of the phantom are presented to confirm the suitability of this phantom's use in both imaging modalities.展开更多
文摘Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Supported by the National Basic Research Program (973 Program) of China (No.2007CB407206)the National Natural Science Foundation of China (No.40371053)
文摘Vegetation fractional coverage (VFC) is one of the key indicators of vegetation distribution. In the work a measurement-based model was developed to derive total forest VFC (TG) as well as the VFC of trees (T) and shrub-grasses (G) separately in a subtropical forest area in Nanjing, China. Both upward and downward photographs were taken with a digital camera in 72 quadrats (10 m × 10 m each). Fifteen models were established and validated. Models jointly using both T and G performed better than those using the T and G separately. The best model, TG = T + G- 1.134 × T × G- 0.025 (R2 = 0.9115, P < 0.01, root mean squared error = 0.0789), is recommended for application. This model provides a good way to obtain total forest VFC values through taking tree and shrub-grass photos on ground below tree canopy rather than above tree canopy.
文摘Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,providing a more scientific and macroscopic way of research.The key to refinement design is to refine the spatial design process and the spatial improvement strategy system.Taking the ancient city of Zhaoyu in Qixian County,Shanxi Province as an example,(1)based on obtaining the integrated data of the ancient city through the drone tilt photography,the style and landscape of the ancient city are modeled;(2)the point cloud data with spatial information is imported into the point cloud analysis platform and the data analysis is carried out from the overall macroscopic style of the ancient city to the refinement level,which results in the formation of a more intuitive landscape design scheme,thus improving the precision and practicability of the landscape design;(3)Based on spatial big data,it starts from the spatial aggregation level,spatial distribution characteristics and other evaluation index system to achieve the refinement analysis of the site.Digital technology and methods are used throughout the process to explore the refined design path.
基金the National Science Foundation of China(Grant Nos.41871233,41371330 , 41001203).
文摘Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.
文摘The computer evaluation of weld X-ray film is an attractive technique for weld seam NDT ( nondestructive testing). To achieve this target, digitalization of film is the first step and automatic defect identification is another key technique. In this paper, a weld X-ray film digitalizing system has been established with linear array CCD and highlight LED light source. Its space resolution can reach 0. 04 mm/pixel and scanning speed can reach 100 mm/s for an industrial film. The transfer function curves of the system have been measured and the results indicate that its image gray resolution can reach 88 G/D at 4. 5D, and its dynamic range can be wider than 2. OD. In order to facilitate the evaluation of large welded structure, a panoramic evaluation algorithm is developed also. The algorithm includes image matching, image fusion and panoramic evaluation of the long linked film image.
文摘Objective: To explore the clinical value of X-ray digital tomosynthesis(DTS)in the diagnosis of knee joint fractures. Methods: A total of 28 cases of thoracic trauma, X-ray film cannot be clearly diagnosed or can confirm the diagnosis but the need for further identification of forensic diagnosis of cases of DTS scan and three-dimensional reconstruction in order to control the study. Results: 1. The reconstructed images after DTS scanning showed that the knee joint fractures were clearly diagnosed, and the detection rate of 28 knee joint fractures was 92.86%. 2. DTS scanning could clearly detect the fresh knee joint fracture's fracture line, corresponding line and broken bones. For the old fracture, DTS scanning could clearly show the condition of the fracture end's healing. Conclusions: The technique is of great value in the diagnosis of knee joint fracture, especially in the examination of complex structure, thick body and review of internal fixation after fracture.
文摘X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.
文摘Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis.
文摘Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have compared image quality, radiation exposure, and bone removal between neuro-digital subtraction angiography and DE-CTA. However, the number of cases was relatively small. The present study examined 300 suspected cases of cerebrovascular disease and observed the methods and duration of post-processing, examination time, and data volume. Results demonstrated similar image quality between the two methods, but lower radiation doses and shorter examination time in DE-CTA. DE-CTA allowed for faster and more stable scanning performance and post-processing methods, facilitating accurate and direct diagnosis of cerebrovascular disease.
文摘In the following work of research, we shall present the results of a study on forms of digital photographic socialization as carried out by the so-called "digital natives" in order to explore their competence in managing digital photographic output and cultural practices. This shall be done under the following categories of analysis: snapshot, organization, socialization, reception, privacy, and copyrights in digital photography. The study explores the forms of digital photography production, technical problems of photographic management and the final uses that digital photographers give to their photos in terms of web tools 2.0, mobile telephones and social networks. Digital photography technology, compact cameras, mobile phones with cameras, specialized websites in photography and the lnternet generate new forms of production and emerging styles of digital photographic socialization. The study is carried out using a defined sample of university students, those digital natives who create and use digital photography.
文摘Background Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and tech-nologies.Digital twins may allow healthcare organizations to determine methods of improving medical processes,enhancing patient experience,lowering operating expenses,and extending the value of care.During the present COVID-19 pandemic,various medical devices,such as X-rays and CT scan machines and processes,are constantly being used to collect and analyze medical images.When collecting and processing an extensive volume of data in the form of images,machines and processes sometimes suffer from system failures,creating critical issues for hospitals and patients.Methods To address this,we introduce a digital-twin-based smart healthcare system in-tegrated with medical devices to collect information regarding the current health condition,configuration,and maintenance history of the device/machine/system.Furthermore,medical images,that is,X-rays,are analyzed by using a deep-learning model to detect the infection of COVID-19.The designed system is based on the cascade recurrent convolution neural network(RCNN)architecture.In this architecture,the detector stages are deeper and more sequentially selective against small and close false positives.This architecture is a multi-stage extension of the RCNN model and sequentially trained using the output of one stage for training the other.At each stage,the bounding boxes are adjusted to locate a suitable value of the nearest false positives during the training of the different stages.In this manner,the arrangement of detectors is adjusted to increase the intersection over union,overcoming the problem of overfitting.We train the model by using X-ray images as the model was previously trained on another dataset.Results The developed system achieves good accuracy during the detection phase of COVID-19.The experimental outcomes reveal the efficiency of the detection architecture,which yields a mean average precision rate of 0.94.
文摘In aerial photography, the primary factor is terrain undulation. However, most of the external aerial photography software used for aerial photography design do not take terrain undulation influence into consideration. Therefore, the design result has comparative randomicity and "gaps" are expected. An aerial photography design system is developed by analyzing the terrain undulation influence to the design result with DEM data so that the forward overlap and side overlap can be justified according to the block terrain undulation to meet specifications or standards. The data designed by this system is compared with the real flying data. The results show that making use of DEM to assist in aerial photography design can ensure that the designed result fits the real terrain better.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
基金Funded by National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.
文摘Two speckle patterns are recorded using a video cameracorresponding to undisplaced and displaced states into the memory ofa computer. After one pattern is added to another, the displacementof the measured points can be calculated by using the Fouriertransform. The expression of displacement field is deduced fornon-uniform displacement, and as an example, a rotatanle disc istested for illustration. The re- sults prove that the present methodis promising.
基金National Institutes of Health,Grant/Award Number:EB023969 and HL154687。
文摘Background:As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues,a need has developed for reliable imaging phantoms for use in system design and component calibration.In advanced imaging modalities such as refraction-based methods,it is critical that developed phantoms capture the biological details seen in clinical precancerous and cancerous cases while minimizing artifacts that may be caused due to phantom production.This work presents the fabrication of a breast tissue imaging phantom from cadaveric breast tissue suitable for use in both transmission and refraction-enhanced imaging systems.Methods:Human cancer cell tumors were grown orthotopically in nude athymic mice and implanted into the fixed tissue while maintaining the native tumor/adipose tissue interface.Results:The resulting human–murine tissue hybrid phantom was mounted on a clear acrylic housing for absorption and refraction X-ray imaging.Digital breast tomosynthesis was also performed.Conclusion:Both attenuation-based imaging and refraction-based imaging of the phantom are presented to confirm the suitability of this phantom's use in both imaging modalities.