Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (...Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (HSI), hue-saturation-value (HSV) color models and the component values of color attributes in the RGB color model were investigated using digital images at six cotton plant population densities in 2012-2014. The results showed that the LI values followed downward quadratic curves after planting. The red (R), green (G) and blue (B) values varied greatly over the years, in accordance with Cai's research demonstrating that the RGB model is affected by outside light. Quadratic curves were fit to these color attributes at six plant population densities. Additionally, linear regressions of LI on every color attribute revealed that the hue (H) values in HSI and HSV were significantly linearly correlated with LI with a determination coefficient (R2)〉0.89 and a root mean square error (RMSE)=0.05. Thus, the H values in the HSI and HSV models could be used to measure LI, and this hypothesis was validated. The H values are new indexes for quantitatively estimating the LI of heterogeneous crop cano- pies, which will provide a theoretical basis for optimizing the crop canopy structure. However, further research should be conducted in other crops and under other growing and environmental conditions to verify this finding.展开更多
Soil is the essential part for agricultural and environmental sciences,and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological enviro...Soil is the essential part for agricultural and environmental sciences,and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological environment.Digital camera,as one of the most popular and convenient proximal sensing instruments,has its irreplaceable position for soil properties assessment.In this study,we collected 52 soil samples and photographs at the same time along the coast in Yancheng City of Jiangsu Province.We carefully analyzed the relationship between soil properties and image brightness,and found that soil salt content had higher correlation with average image brightness value than soil water content.From the brightness levels,the high correlation coefficients between soil salt content and brightness levels concentrated on the high brightness values,and the high correlation coefficients between soil water content and brightness levels focused on the low brightness values.Different significance levels(P)determined different brightness levels related to soil properties,hence P value setting can be an optional way to select brightness levels as the input variables for modeling soil properties.Given these information,random forest algorithm was applied to develop soil salt content and soil water content inversion models using randomly 70%of the dataset,and the rest data for testing models.The results showed that soil salt content model had high accuracy(R_(v)^(2)=0.79,RMSE_(v)=12 g/kg,and RPD_(v)=2.18),and soil water content inversion model was barely satisfied(R_(v)^(2)=0.47,RMSE_(v)=3.04%,and RPD_(v)=1.38).This study proposes a method of modeling soil properties with a digital camera.Combining unmanned aerial vehicle(UAV),it has potential popularization and application value for precise agriculture and land management.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo...A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.展开更多
Compressive strength is the most important metric of concrete quality.Various nondestructive and semi-destructive tests can be used to evaluate the compressive strength of concrete.In the present study,a new image-bas...Compressive strength is the most important metric of concrete quality.Various nondestructive and semi-destructive tests can be used to evaluate the compressive strength of concrete.In the present study,a new image-based machine learning method is used to predict concrete compressive strength,including evaluation of six different models.These include support-vector machine model and various deep convolutional neural network models,namely AlexNet,GoogleNet,VGG19,ResNet,and Inception-ResNet-V2.In the present investigation,cement mortar samples were prepared using each of the cement:sand ratios of 1:3,1:4,and 1:5,and using the water:cement ratios of 0.35 and 0.55.Cement concrete was prepared using the cement:sand:coarse aggregate ratios of 1:5:10,1:3:6,1:2:4,1:1.5:3 and 1:1:2,using the water:cement ratio of 0.5 for all samples.The samples were cut,and several images of the cut surfaces were captured at various zoom levels using a digital microscope.All samples were then tested destructively for compressive strength.The images and corresponding compressive strength were then used to train machine learning models to allow them to predict compressive strength based upon the image data.The Inception-ResNet-V2 models exhibited the best predictions of compressive strength among the models tested.Overall,the present findings validated the use of machine learning models as an efficient means of estimating cement mortar and concrete compressive strengths based on digital microscopic images,as an alternative nondestructive/semi-destructive test method that could be applied at relatively less expense.展开更多
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki...The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.展开更多
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions...Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics...The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics: first, the midline in the first image is partitioned into equal interval lengths and the coordinates of all inter segmental points are saved. Secondly, these points coordinates are searched in the next frame with the digital image correlation (DIC) method, then these points are fitted with a spline curve function. Repeat this step until all the midlines are figured out frame by frame. Finally, according to the variety of midlines, the kinematics of the fast-start is calculated. Using this system to test carp C-start, the duration is divided into two stages: stage 1 is defined as the formation of the C shape and stage 2 as the return flip of the tail followed with forward motion. By tracing the middle line, the kinematic parameters of turning rate, centre of mass (CM) turning rate, CM turning radius, etc. are obtained.展开更多
[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation exp...[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.展开更多
For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based o...For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based on digital image processing. By analyzing the spatial spectrum of the off-axis digital hologram, it theoretically proves that the zero-order image can be effectively eliminated by differential before reconstruction. Then, the detected hologram is processed in the program with differential and reconstruction. Both the theoretical analysis and digital reconstruction results show that it can effectively eliminate the large bright spot in the center of the reconstructed image caused by the zero-order image, improve the image quality significantly, and render a better contrast of the reconstructed image. This method is very simple and convenient due to no superfluous optical elements and requiring only one time record.展开更多
In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in...In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.展开更多
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ...In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.展开更多
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp...The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these u...Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these unique collections of great value to education and research are not currently accessible due to distance, form, and technical barriers. This project is to find new ways to enable users to access and exploit these significant research collections via global network. As GMNet is ending its first 5-year phase in October 2005, it has contributed substantially to the community building in digital library development by ac- commodating numerous collaborators and technical staff from various parts of the world to spend 3 to 5 months as a full-member of the GMNet team in Boston. They have come from different parts of China—such as Sichuan, Hainan, Shanghai and Xi’an; Croatia; and Hanoi, Vietnam. In addition to contribute to the overall system development and enhancement of system function- alities, they have brought valuable sample image collections of their own institutions/countries, and actually developed prototype collections as a part of GMNet. This paper describes the exciting and productive experience of the first of this visiting research group in developing the GMNet’s Version 2.0 PHP-based system under Prof. Chen’s overall supervision. It also describes both the system’s technical level structure—user/Web-based application/data, and complex functionalities with multi-collection, multi-lingual, multi-modal searching capabilities; system management capabilities; as well as provisions for user uploads and retrieval for our own projects. This Version 2.0 system is built on the Linux/Apache/PHP/MySQL platform. What is described in this paper is an actual case which has formed a base for further new development by others in the research group. It demonstrates fully the value of the synergistic collaboration among global partners for universal digital library development. More information can be found in http://www.memorynet.org/.展开更多
The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic par...The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
基金supported by the National Natural Science Foundation (31371561)
文摘Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (HSI), hue-saturation-value (HSV) color models and the component values of color attributes in the RGB color model were investigated using digital images at six cotton plant population densities in 2012-2014. The results showed that the LI values followed downward quadratic curves after planting. The red (R), green (G) and blue (B) values varied greatly over the years, in accordance with Cai's research demonstrating that the RGB model is affected by outside light. Quadratic curves were fit to these color attributes at six plant population densities. Additionally, linear regressions of LI on every color attribute revealed that the hue (H) values in HSI and HSV were significantly linearly correlated with LI with a determination coefficient (R2)〉0.89 and a root mean square error (RMSE)=0.05. Thus, the H values in the HSI and HSV models could be used to measure LI, and this hypothesis was validated. The H values are new indexes for quantitatively estimating the LI of heterogeneous crop cano- pies, which will provide a theoretical basis for optimizing the crop canopy structure. However, further research should be conducted in other crops and under other growing and environmental conditions to verify this finding.
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28110301,XDA2306040303)National Natural Science Foundation of China(No.41807001,41977424)Natural Science Foundation of Jilin Province(No.20200201026JC)。
文摘Soil is the essential part for agricultural and environmental sciences,and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological environment.Digital camera,as one of the most popular and convenient proximal sensing instruments,has its irreplaceable position for soil properties assessment.In this study,we collected 52 soil samples and photographs at the same time along the coast in Yancheng City of Jiangsu Province.We carefully analyzed the relationship between soil properties and image brightness,and found that soil salt content had higher correlation with average image brightness value than soil water content.From the brightness levels,the high correlation coefficients between soil salt content and brightness levels concentrated on the high brightness values,and the high correlation coefficients between soil water content and brightness levels focused on the low brightness values.Different significance levels(P)determined different brightness levels related to soil properties,hence P value setting can be an optional way to select brightness levels as the input variables for modeling soil properties.Given these information,random forest algorithm was applied to develop soil salt content and soil water content inversion models using randomly 70%of the dataset,and the rest data for testing models.The results showed that soil salt content model had high accuracy(R_(v)^(2)=0.79,RMSE_(v)=12 g/kg,and RPD_(v)=2.18),and soil water content inversion model was barely satisfied(R_(v)^(2)=0.47,RMSE_(v)=3.04%,and RPD_(v)=1.38).This study proposes a method of modeling soil properties with a digital camera.Combining unmanned aerial vehicle(UAV),it has potential popularization and application value for precise agriculture and land management.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
文摘A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.
文摘Compressive strength is the most important metric of concrete quality.Various nondestructive and semi-destructive tests can be used to evaluate the compressive strength of concrete.In the present study,a new image-based machine learning method is used to predict concrete compressive strength,including evaluation of six different models.These include support-vector machine model and various deep convolutional neural network models,namely AlexNet,GoogleNet,VGG19,ResNet,and Inception-ResNet-V2.In the present investigation,cement mortar samples were prepared using each of the cement:sand ratios of 1:3,1:4,and 1:5,and using the water:cement ratios of 0.35 and 0.55.Cement concrete was prepared using the cement:sand:coarse aggregate ratios of 1:5:10,1:3:6,1:2:4,1:1.5:3 and 1:1:2,using the water:cement ratio of 0.5 for all samples.The samples were cut,and several images of the cut surfaces were captured at various zoom levels using a digital microscope.All samples were then tested destructively for compressive strength.The images and corresponding compressive strength were then used to train machine learning models to allow them to predict compressive strength based upon the image data.The Inception-ResNet-V2 models exhibited the best predictions of compressive strength among the models tested.Overall,the present findings validated the use of machine learning models as an efficient means of estimating cement mortar and concrete compressive strengths based on digital microscopic images,as an alternative nondestructive/semi-destructive test method that could be applied at relatively less expense.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.
文摘Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
基金The National Natural Science Foundation of China (No.10872139)
文摘The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics: first, the midline in the first image is partitioned into equal interval lengths and the coordinates of all inter segmental points are saved. Secondly, these points coordinates are searched in the next frame with the digital image correlation (DIC) method, then these points are fitted with a spline curve function. Repeat this step until all the midlines are figured out frame by frame. Finally, according to the variety of midlines, the kinematics of the fast-start is calculated. Using this system to test carp C-start, the duration is divided into two stages: stage 1 is defined as the formation of the C shape and stage 2 as the return flip of the tail followed with forward motion. By tracing the middle line, the kinematic parameters of turning rate, centre of mass (CM) turning rate, CM turning radius, etc. are obtained.
基金Supported by the Natural Science Foundation of Shaanxi Province,China (2011JE012)the Special Research Fund of the Education Bureau of Shaanxi Province,China(2010JK464)~~
文摘[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.
基金The Natural Science Foundation of Jiangsu Province (No.BK2006102)the National Natural Science Foundation of China(No.10772086)
文摘For eliminating the zero-order image in digital holography, a new method using the differential of the hologram intensity instead of the hologram itself for numerical reconstruction is proposed. This method is based on digital image processing. By analyzing the spatial spectrum of the off-axis digital hologram, it theoretically proves that the zero-order image can be effectively eliminated by differential before reconstruction. Then, the detected hologram is processed in the program with differential and reconstruction. Both the theoretical analysis and digital reconstruction results show that it can effectively eliminate the large bright spot in the center of the reconstructed image caused by the zero-order image, improve the image quality significantly, and render a better contrast of the reconstructed image. This method is very simple and convenient due to no superfluous optical elements and requiring only one time record.
文摘In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.
基金supported by the National Basic Research 973 Program of China (Grant 2014CB046905)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)+1 种基金the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)the innovation research project for academic graduate of Jiangsu Province (Grant KYLX16_0536)
文摘In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme.This is DET CRC Document 2017/954
文摘The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金supported by the US National Science Foundation/International Digital Library Program(Grant No.NSF/CISE/IIS-9905833).
文摘Global Memory Net (GMNet) is intended to be an effective gateway to the world cultural, historical, and heritage image collections from selected academic educational and research partners in the world. Much of these unique collections of great value to education and research are not currently accessible due to distance, form, and technical barriers. This project is to find new ways to enable users to access and exploit these significant research collections via global network. As GMNet is ending its first 5-year phase in October 2005, it has contributed substantially to the community building in digital library development by ac- commodating numerous collaborators and technical staff from various parts of the world to spend 3 to 5 months as a full-member of the GMNet team in Boston. They have come from different parts of China—such as Sichuan, Hainan, Shanghai and Xi’an; Croatia; and Hanoi, Vietnam. In addition to contribute to the overall system development and enhancement of system function- alities, they have brought valuable sample image collections of their own institutions/countries, and actually developed prototype collections as a part of GMNet. This paper describes the exciting and productive experience of the first of this visiting research group in developing the GMNet’s Version 2.0 PHP-based system under Prof. Chen’s overall supervision. It also describes both the system’s technical level structure—user/Web-based application/data, and complex functionalities with multi-collection, multi-lingual, multi-modal searching capabilities; system management capabilities; as well as provisions for user uploads and retrieval for our own projects. This Version 2.0 system is built on the Linux/Apache/PHP/MySQL platform. What is described in this paper is an actual case which has formed a base for further new development by others in the research group. It demonstrates fully the value of the synergistic collaboration among global partners for universal digital library development. More information can be found in http://www.memorynet.org/.
基金the National Natural Science Foundation of China (No.10075029).
文摘The quality of dark output images from the CMOS (complementarymetal oxide semiconductor) black and white (B & W) digital imagesensors captured before and after γ-ray irradiation was studied. Thecharacteristic parameters of the dark output images captured atdifferent radiation dose, e.g. average brightness and itsnon-uniformity of dark out- put images, were analyzed by our testsoftware. The primary explanation for the change of the parameterswith the radi- ation dose was given.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.