期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms
1
作者 Manar Ahmed Hamza 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2879-2895,共17页
Breast Cancer(BC)is considered the most commonly scrutinized can-cer in women worldwide,affecting one in eight women in a lifetime.Mammogra-phy screening becomes one such standard method that is helpful in identifying... Breast Cancer(BC)is considered the most commonly scrutinized can-cer in women worldwide,affecting one in eight women in a lifetime.Mammogra-phy screening becomes one such standard method that is helpful in identifying suspicious masses’malignancy of BC at an initial level.However,the prior iden-tification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis.Deep learning(DL)techniques were broadly utilized for medical imaging applications,particularly breast mass classi-fication.The advancements in the DL field paved the way for highly intellectual and self-reliant computer-aided diagnosis(CAD)systems since the learning cap-ability of Machine Learning(ML)techniques was constantly improving.This paper presents a new Hyperparameter Tuned Deep Hybrid Denoising Autoenco-der Breast Cancer Classification(HTDHDAE-BCC)on Digital Mammograms.The presented HTDHDAE-BCC model examines the mammogram images for the identification of BC.In the HTDHDAE-BCC model,the initial stage of image preprocessing is carried out using an average median filter.In addition,the deep convolutional neural network-based Inception v4 model is employed to generate feature vectors.The parameter tuning process uses the binary spider monkey opti-mization(BSMO)algorithm.The HTDHDAE-BCC model exploits chameleon swarm optimization(CSO)with the DHDAE model for BC classification.The experimental analysis of the HTDHDAE-BCC model is performed using the MIAS database.The experimental outcomes demonstrate the betterments of the HTDHDAE-BCC model over other recent approaches. 展开更多
关键词 digital mammograms breast cancer classification computer-aided diagnosis deep learning metaheuristics
下载PDF
Automated Deep Learning Empowered Breast Cancer Diagnosis UsingBiomedical Mammogram Images 被引量:3
2
作者 JoséEscorcia-Gutierrez Romany F.Mansour +4 位作者 Kelvin Belen Javier Jiménez-Cabas Meglys Pérez Natasha Madera Kevin Velasquez 《Computers, Materials & Continua》 SCIE EI 2022年第6期4221-4235,共15页
Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use ... Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques.Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate.But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives.For resolving the issues of false positives of breast cancer diagnosis,this paper presents an automated deep learning based breast cancer diagnosis(ADL-BCD)model using digital mammograms.The goal of the ADL-BCD technique is to properly detect the existence of breast lesions using digital mammograms.The proposed model involves Gaussian filter based pre-processing and Tsallis entropy based image segmentation.In addition,Deep Convolutional Neural Network based Residual Network(ResNet 34)is applied for feature extraction purposes.Specifically,a hyper parameter tuning process using chimp optimization algorithm(COA)is applied to tune the parameters involved in ResNet 34 model.The wavelet neural network(WNN)is used for the classification of digital mammograms for the detection of breast cancer.The ADL-BCD method is evaluated using a benchmark dataset and the results are analyzed under several performance measures.The simulation outcome indicated that the ADL-BCD model outperforms the state of art methods in terms of different measures. 展开更多
关键词 Breast cancer digital mammograms deep learning wavelet neural network Resnet 34 disease diagnosis
下载PDF
Cognitive Computing-Based Mammographic Image Classification on an Internet of Medical
3
作者 Romany F.Mansour Maha M.Althobaiti 《Computers, Materials & Continua》 SCIE EI 2022年第8期3945-3959,共15页
Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence o... Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques. 展开更多
关键词 Cognitive computing breast cancer digital mammograms image processing internet of medical things smart healthcare
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部