The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the ha...The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".展开更多
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a...The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.展开更多
基金Youth Research Start-up Fund of XinJiang University(QN070136)National Natural Science Foundation of China(50667002)
文摘The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".
文摘The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.