This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equa...Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.展开更多
Since Grover’s algorithm was first introduced, it has become a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The original application was the uns...Since Grover’s algorithm was first introduced, it has become a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The original application was the unstructured search problems with the time complexity of O(). In Grover’s algorithm, the key is Oracle and Amplitude Amplification. In this paper, our purpose is to show through examples that, in general, the time complexity of the Oracle Phase is O(N), not O(1). As a result, the time complexity of Grover’s algorithm is O(N), not O(). As a secondary purpose, we also attempt to restore the time complexity of Grover’s algorithm to its original form, O(), by introducing an O(1) parallel algorithm for unstructured search without repeated items, which will work for most cases. In the worst-case scenarios where the number of repeated items is O(N), the time complexity of the Oracle Phase is still O(N) even after additional preprocessing.展开更多
Grovers algorithm is a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The Amplitude Amplification in Grovers algorithm is T = O(N). This paper intr...Grovers algorithm is a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The Amplitude Amplification in Grovers algorithm is T = O(N). This paper introduces two new algorithms for Amplitude Amplification in Grovers algorithm with a time complexity of T = O(logN), aiming to improve efficiency in quantum computing. The difference between Grovers algorithm and our first algorithm is that the Amplitude Amplification ratio in Grovers algorithm is an arithmetic series and ours, a geometric one. Because our Amplitude Amplification ratios converge much faster, the time complexity is improved significantly. In our second algorithm, we introduced a new concept, Amplitude Transfer where the marked state is transferred to a new set of qubits such that the new qubit state is an eigenstate of measurable variables. When the new qubit quantum state is measured, with high probability, the correct solution will be obtained.展开更多
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
文摘Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.
文摘Since Grover’s algorithm was first introduced, it has become a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The original application was the unstructured search problems with the time complexity of O(). In Grover’s algorithm, the key is Oracle and Amplitude Amplification. In this paper, our purpose is to show through examples that, in general, the time complexity of the Oracle Phase is O(N), not O(1). As a result, the time complexity of Grover’s algorithm is O(N), not O(). As a secondary purpose, we also attempt to restore the time complexity of Grover’s algorithm to its original form, O(), by introducing an O(1) parallel algorithm for unstructured search without repeated items, which will work for most cases. In the worst-case scenarios where the number of repeated items is O(N), the time complexity of the Oracle Phase is still O(N) even after additional preprocessing.
文摘Grovers algorithm is a category of quantum algorithms that can be applied to many problems through the exploitation of quantum parallelism. The Amplitude Amplification in Grovers algorithm is T = O(N). This paper introduces two new algorithms for Amplitude Amplification in Grovers algorithm with a time complexity of T = O(logN), aiming to improve efficiency in quantum computing. The difference between Grovers algorithm and our first algorithm is that the Amplitude Amplification ratio in Grovers algorithm is an arithmetic series and ours, a geometric one. Because our Amplitude Amplification ratios converge much faster, the time complexity is improved significantly. In our second algorithm, we introduced a new concept, Amplitude Transfer where the marked state is transferred to a new set of qubits such that the new qubit state is an eigenstate of measurable variables. When the new qubit quantum state is measured, with high probability, the correct solution will be obtained.