期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
1
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control (MPC).
下载PDF
IMPROVED MODEL FOR THREE DIMENSIONAL NONLINEAR WATER WAVE FORCE PREDICTION
2
作者 Lu Yu-lin Liu Wen-yan Li Bao-yuan Dalian University of Technology,Dalian 116024,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1990年第1期56-65,共10页
An improved model for numerically predicting nonlinear wave forces exerted on an offshore structure is pro- posed.In a previous work[9],the authors presented a model for the same purpose with an open boundary condi- t... An improved model for numerically predicting nonlinear wave forces exerted on an offshore structure is pro- posed.In a previous work[9],the authors presented a model for the same purpose with an open boundary condi- tion imposed,where the wave celerity has been defined constant.Generally,the value of wave celerity is time-de- pendent and varying with spatial location.With the present model the wave celerity is evaluated by an upwind dif- ference scheme,which enables the method to be extended to conditions of variable finite water depth,where the value of wave celerity varies with time as the wave approaches the offshore structure.The finite difference method incorporated with the time-stepping technique in time domain developed here makes the numerical evolution effec- tive and stable.Computational examples on interactions between a surface-piercing vertical cylinder and a solitary wave or a cnoidal wave train demonstrates the validity of this program. 展开更多
关键词 WAVE PRO IMPROVED MODEL FOR THREE dimensionAL NONLINEAR WATER WAVE FORCE prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部