Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber ca...Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.展开更多
The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts ...The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle...Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.展开更多
The selective hydrogenation of dimethyl toluene-2,4-dicarbamate(TDC)to methyl cyclohexyl-2,4-dicarbamate(also called hydrogenated TDC,HTDC)is an essential process for non-phosgene synthesis of methylcyclohexane-2,4-di...The selective hydrogenation of dimethyl toluene-2,4-dicarbamate(TDC)to methyl cyclohexyl-2,4-dicarbamate(also called hydrogenated TDC,HTDC)is an essential process for non-phosgene synthesis of methylcyclohexane-2,4-diisocyanate.Herein,we prepared a series of supported Rh-based catalysts by the excessive impregnation method and investigated their catalytic performance for the selective hydrogenation of TDC.The emphasis was put on the influence of support properties on the catalytic performance.Among the prepared catalysts,Rh/g-Al_(2)O_(3)performed the best:a HTDC yield of 88.4%was achieved with a 100%conversion of TDC under the conditions of 100℃,3 MPa and 1 h.Furthermore,Rh/γ-Al_(2)O_(3)could be repetitively used for 4 times without a significant loss of its catalytic activity.TEM,XRD,N_(2)adsorption-desorption,H_(2)-TPR,NH_(3)/CO_(2)-TPD,XPS and ICP characterizations were employed to distinguish the properties of the prepared catalysts and the results were correlated with their catalytic performance.It is indicated that the yield of HTDC shows a positive relevance with the percentage of moderate-to-strong acid sites and the content of Rh^(n+)(n≥3)in the catalysts.High values of the percentage and the content can promote a strong interaction between Rh nanoparticles and the supports,facilitating both the transfer of electrons from Rh to the support and the formation of Rh^(n+)species.This is conducive to activating the benzene ring of TDC and thereby improving the yield of HTDC.展开更多
It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale app...It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.展开更多
Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wet...Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 ...The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. An...An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. And there are traditional strong hydrogen bonds and weak C-H- ~ ~ O contacts existing in the mixtures according to the analysis of the radial distribution functions. The insight structures in the DMSO-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Interestingly, the molar fraction of DMSO 0.35 is found to be a special concentration by the network. It is the transitional region which is from the water rich region to the DMSO rich region. The stable aggregates of (DMSO)m'S=O…… HW-OW-(H20)n might play a key role in this region. Moreover, the simulation is compared with the chemical shifts in NMR and wavenumbers in IR with concentration dependence. And the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data in NMR and IR spectra.展开更多
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ...Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.展开更多
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
文摘Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.
文摘The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金supported by National Natural Science Foundation of China (No.22102147 and 22002151)State Key Laboratory of Chemical Engineering (No.SKL-ChE-22A02)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ21B030009the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA29050300)Qinchuang Yuan high-level innovation and entrepreneurship talents implementing project (No.QCYRCXM-2022-177)。
文摘Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.
基金financially supported by National Natural Science Foundation of China(U21A20306,21978066)Hebei Province Fig.7.Reaction mechanism of selective hydrogenation of TDC over Rh-based catalysts.Graduate Innovation Funding Project(CXZZBS2023033).
文摘The selective hydrogenation of dimethyl toluene-2,4-dicarbamate(TDC)to methyl cyclohexyl-2,4-dicarbamate(also called hydrogenated TDC,HTDC)is an essential process for non-phosgene synthesis of methylcyclohexane-2,4-diisocyanate.Herein,we prepared a series of supported Rh-based catalysts by the excessive impregnation method and investigated their catalytic performance for the selective hydrogenation of TDC.The emphasis was put on the influence of support properties on the catalytic performance.Among the prepared catalysts,Rh/g-Al_(2)O_(3)performed the best:a HTDC yield of 88.4%was achieved with a 100%conversion of TDC under the conditions of 100℃,3 MPa and 1 h.Furthermore,Rh/γ-Al_(2)O_(3)could be repetitively used for 4 times without a significant loss of its catalytic activity.TEM,XRD,N_(2)adsorption-desorption,H_(2)-TPR,NH_(3)/CO_(2)-TPD,XPS and ICP characterizations were employed to distinguish the properties of the prepared catalysts and the results were correlated with their catalytic performance.It is indicated that the yield of HTDC shows a positive relevance with the percentage of moderate-to-strong acid sites and the content of Rh^(n+)(n≥3)in the catalysts.High values of the percentage and the content can promote a strong interaction between Rh nanoparticles and the supports,facilitating both the transfer of electrons from Rh to the support and the formation of Rh^(n+)species.This is conducive to activating the benzene ring of TDC and thereby improving the yield of HTDC.
基金supported by the Liaoning Provincial Natural Science Foundation Joint Fund for Innovation Capability Improvement(2021-NLTS-12-02)Key Research and Local Service Projects of the Liaoning Provincial Department of Education(LDB2019005).
文摘It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside.
文摘Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金Supported by Foundation for University Key Teacher by the Min-istry of Education
文摘The total synthesis of 3,7 dimethyl 2 tridecanyl acetate,the active component of the sex pheromone of diprion pini,was investigated in this paper.The two key synthins blocks,2 methyl octan 1 yl lithium and 3,4 dimethyl γ butyrolactone,were obtained from diethyl malonate and 2,3 epoxybutane.2 Methyl octan 1 yl lithium reacted with 3,4 dimethyl γ butyrolactone to yield the ketoalcohol and then followed by Huang Minlong reduction to afford 3,7 dimethyl 2 tridecanol,acylated with acetic anhydide to give 3,7 dimethyl 2 tridecanyl acetate.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
文摘An all-atom dimethyl sulfoxide (DMSO) and water model have been used for molecular dynamics simulation. The NMR and IR spectra are also performed to study the structures and interactions in the DMSO-water system. And there are traditional strong hydrogen bonds and weak C-H- ~ ~ O contacts existing in the mixtures according to the analysis of the radial distribution functions. The insight structures in the DMSO-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Interestingly, the molar fraction of DMSO 0.35 is found to be a special concentration by the network. It is the transitional region which is from the water rich region to the DMSO rich region. The stable aggregates of (DMSO)m'S=O…… HW-OW-(H20)n might play a key role in this region. Moreover, the simulation is compared with the chemical shifts in NMR and wavenumbers in IR with concentration dependence. And the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data in NMR and IR spectra.
基金supported by the National Natural Science Foundation of China(2137312021471022)+5 种基金the Development of Science and Technology Plan of Jilin ProvinceChina(2010154920130102001JC)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT13022)of Chinathe Program of Jilin Provincial Education Department(20131302013146)~~
文摘Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.