Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS...Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.展开更多
Dimethylsulfide(DMS) measurements in the surface seawater of China eastern coastline were conducted during March 9—10, 1993 in Bohai Sea along the cruise from Dalian to Tianjin and during September 24—25, 1994 in Ye...Dimethylsulfide(DMS) measurements in the surface seawater of China eastern coastline were conducted during March 9—10, 1993 in Bohai Sea along the cruise from Dalian to Tianjin and during September 24—25, 1994 in Yellow Sea along the cruise from Shanghai to Qingdao. On the cruise in Bohai Sea DMS concentrations varied from 0.11 to 2.63 nmol/L with an average of 1.31 nmol/L, while DMS flux was estimated to be 0.85 μmol/(m 2·d) with the range of 0.04—3.12 μmol/(m 2·d). On the cruise in Yellow Sea DMS concentrations varied from 0.95 to 7.48 nmol/L with an average of 2.89 nmol/L, and DMS flux was estimated to be 7.94 μmol/(m 2·d) with the range of 0.11—18.88 μmol/(m 2·d). Variations in DMS concentrations along the latitude in Yellow Sea were observed larger than those along the longitude in Bohai Sea. DMS concentrations and fluxes had a similar spatial trend both in Bohai Sea and Yellow Sea with the correlation coefficients of 0.75 and 0.64, respectively.展开更多
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water o...The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concen- trations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the mi- crolayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPpchlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m^2·d), which highlights the effects of human impacts on DMS emission.展开更多
The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate(DMSP) and dimethylsulfide(DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum,an ecolog...The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate(DMSP) and dimethylsulfide(DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum,an ecologically important species.Changes in salinity from 20-32 caused no measurable variation in cell growth or culture yield,but increased intracellular DMSP per cell by 30%.Nitrogen limitation caused up to a two-fold increase in total DMSP per cell and up to a three-fold increase in DMS per cell.These changes in DMSP and DMS per cell in the Skeletonema costatum cultures with nitrogen limitation and changing salinity were primarily attributed to the physiological functions of DMSP as an osmolyte and an antioxidant.The data obtained in this study indicated that nitrogen limitation and salinity may play an important role in climate feedback mechanisms involving biologically derived DMS.展开更多
The distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in surface water of the Yellow Sea and the Bohai Sea were studied during June 2011. The mean concentrations and ranges...The distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in surface water of the Yellow Sea and the Bohai Sea were studied during June 2011. The mean concentrations and ranges of DMS, dissolved DMSP (DMSPd), and particulate DMSP (DMSPp) in surface waters were 6.85 (1.60-12.36), 7.25 (2.28-19.05) and 61.87 (6.28-224.01) nmol/L, respectively. There were strong correlations between DMSPp and chlorophyll a in the Bohai Sea and the North Yellow Sea, respectively, and concentrations of DMS and DMSP were high, with a relatively high proportion of dinoflagellates, in the region of the South Yellow Sea Cold Water Mass. Results show that phytoplankton biomass and species composition were important factors that controlled the distribution of DMS and DMSP. Complex environmental factors, including nutrients, transparency, and terrestrial runoff, might also influence the variability in DMS and DMSP. Biological production and consumption rates of DMS in the Bohai Sea were higher than those in the Yellow Sea. DMS production rates were closely correlated with DMSPd concentrations. DMS and DMSP exhibited obvious diel variations, with high concentrations occurring in the late afternoon (16:00-19:00) and low concentrations occurring during the night, implying that the intensity of solar radiation had a significant influence on these variations. Size distributions of chlorophyll a and DMSPp were also investigated and large nanoplankton (5-20 μm), mainly diatoms, contributed significantly to chlorophyll a and DMSPp at most stations. The average sea-to-air flux of DMS in the study area was estimated to be 11.07 μmol/(m^2·d) during the summer.展开更多
Dimethylsulfide (DMS) is generally thought to be lost from the surface oceans by evasion into the atmosphere as well as consumption by microbe. However, photochemical process might be important in the removal of DMS...Dimethylsulfide (DMS) is generally thought to be lost from the surface oceans by evasion into the atmosphere as well as consumption by microbe. However, photochemical process might be important in the removal of DMS in the oceanic photic zone. A kinetic investigation into the photochemical oxidation of DMS in seawater was performed. The photo-oxidation rates of DMS were influenced by various factors including the medium, dissolved oxygen, photosensitizers, and heavy metal ions. The photo-oxidation rates of DMS were higher in seawater than in distilled water, presumably due to the effect of salinity existing in seawater. Three usual photosensitizers (humic acid, fulvic acid and anthroquinone), especially in the presence of oxygen, were able to enhance the photo-oxidation rate of DMS, with the fastest rate observed with anthroquinone. Photo-oxidation of DMS followed first order reaction kinetics with the rate constant ranging from 2.5 × 10^-5 to 34.3 × 10^-5. Quantitative analysis showed that approximately 32% of the photochemically removed DMS was converted to dimethylsulfoxide. One of the important findings was that the presence of Hg^2 + could markedly accelerate the photo-oxidation rate of DMS in seawater. The mechanism of mercuric catalysis for DMS photolysis was suggested according to the way of CTTM ( charge transfer to metal) of DMS - Hg^2+ complex.展开更多
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the glo...The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.展开更多
Time-series of chlorophyll-a(CHL),a proxy for phytoplankton biomass,and various satellite-derived climate indicators are compared in a region of the Subantarctic Southern Ocean(40°-60°S,110°-140°E)...Time-series of chlorophyll-a(CHL),a proxy for phytoplankton biomass,and various satellite-derived climate indicators are compared in a region of the Subantarctic Southern Ocean(40°-60°S,110°-140°E)for years 2012-2014.CHL reached a minimum in winter(June)and a maximum in late summer(early February).Zonal mean CHL decreased towards the south.Mean sea surface temperature(SST)ranged between 8℃and 15℃and peaked in late February.CHL and SST were positively correlated from March to June,negatively correlated from July to September.CHL and wind speed(WIND)were negatively correlated with peak WIND occurred in winter.Wind direction(WIRD)was mostly in the southwest to westerly direction.The Antarctic Oscillation index(AAO)and CHL were negatively correlated(R=−0.58),indicating that as synoptic wind systems move southwards,CHL increases,and conversely when wind systems move northwards,CHL decreases.A genetic algorithm is used to calibrate the biogeochemical DMS model’s key parameters.Under 4×CO2(after year 2100)Regional mean SST increases 12%-17%,WIND increases 1.2ms−1,Cloud Cover increases 4.8%and mixed layer depth(MLD)decreases 48m.The annual CHL increases 6.3%.The annual mean DMS flux increase 25.2%,increases 37%from day 1 to day 280 and decrease 3%from day 288 to day 360.The general increase of DMS flux under 4×CO2 conditions indicates the Subantarctic regional climate would be affected by changes in the DMS flux,with the potential for a cooling effect in the austral summer and autumn.展开更多
The effects of selected environmental variables on the production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by laboratory batch cultures of microalgae were studied. The variations of DMS and DMSP ...The effects of selected environmental variables on the production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by laboratory batch cultures of microalgae were studied. The variations of DMS and DMSP output with algae growth and variations in nutrients and salinity are reported.展开更多
We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.Th...We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.展开更多
The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol o...The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol optical depth(AOD) is used as a proxy for aerosol burden which is dominated by biogenic aerosol during summer and autumn. The spring sea ice melt period is a strong source of aerosol precursors in the Arctic. However, high aerosol levels in early spring are likely related to advection of continental pollution from the south(Arctic haze).Higher AOD was generally registered in the southern part of the study region. Sea ice concentration(SIC) and AOD were positively correlated, while cloud cover(CLD) and AOD were negative correlation. The seasonal peaks of SIC and CLD were both one month ahead of the peak in AOD. There is a strong positive correlation between AOD and SIC. Melting ice is positively correlated with chlorophyll a(CHL) almost through March to September,but negatively correlated with AOD in spring and early summer. Elevated spring and early summer AOD most likely were influenced by combination of melting ice and higher spring wind in the region. The peak of DMS flux occurred in spring due to the elevated spring wind and more melting ice. DMS concentration and AOD were positively correlated with melting ice from March to May. Elevated AOD in early autumn was likely related to the emission of biogenic aerosols associated with phytoplankton synthesis of DMS. The DMS flux would increase more than triple by 2100 in the Greenland Sea. The significant increase of biogenic aerosols could offset the warming in the Greenland Sea.展开更多
Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolve...Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.展开更多
The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, part...The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, partial pressure of CO_2 (pCO_2), and DMS concentrations (and ranges) were 110% (89%–167%), 374μatm (91–640 μatm), and 8.53 nmol L^(-1) (1.10–27.50 nmol L^(-1)), respectively. The sea-to-air fluxes (and ranges) of DMS and CO_2 were 8.24 μmol m^(-2)d^(-1) (0.26–62.77 μmol m^(-2)d^(-1)), and -4.7 mmol m^(-2)d^(-1) (-110.8-31.7 mmol m^(-2)d^(-1)), respectively. Dissolved O_2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO_2. The pCO_2 was significantly and negatively correlated with the O_2 saturation level, while the DMS concentration showed different positive relationships with the O_2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123?E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative de-composition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O_2 and produced additional CO_2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations ap-peared between the O_2 saturation level, pCO_2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O_2, CO_2, and DMS.展开更多
Measurements of dimethylsulfide (DMS) concentrations in surface seawater and vertical profiles at sixteen stations in the Nansha Islands waters of the South China Sea showed that surface seawater DMS concentrations ra...Measurements of dimethylsulfide (DMS) concentrations in surface seawater and vertical profiles at sixteen stations in the Nansha Islands waters of the South China Sea showed that surface seawater DMS concentrations ranged from S 52 to 122 ng/L, average of 82 ng/L. DMS distribution tendency coincided with that of primary productivity observed during the same cruise. In vertical profiles, the DMS distribution was influenced by factors such as algal biomass, as indicated by chlorophyll a, particular algal species, consumption by photochemical oxidation, etc. Maximal DMS concentrations appeared at 30-75 m depths. DMS concentration was significantly correlated to seawater temperature. The sea to air DMS flux from this sea area was estimated to be 5.95 μmol/(m 2·d).展开更多
DMS (dimethylsulfide), a breakdown product of cellular solutes of many species of macroalgae andphytoplankton plays an important role in regulating global climate and counteracting partly the "greenhouse" ef...DMS (dimethylsulfide), a breakdown product of cellular solutes of many species of macroalgae andphytoplankton plays an important role in regulating global climate and counteracting partly the "greenhouse" effect.In this paper, the advance and prospects of DMS study are reviewed and discussed with respectto DMS sample storage, measurement and importance in regulating global climate and the acidity ofrain and aerosol.展开更多
Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)i...Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)in the Greenland Sea region(GS)(20˚W–10˚E,70˚–80˚N)and the Barents Sea region(BS)(30˚–50˚E,70˚–80˚N)are analysed and com-pared.Higher CHL was observed in BS,about 60%higher than that in GS.Compared with the northern regions of BS and GS(BSN and GSN),CHL in the southern region of BS and GS(BSS and GSS)increased by 77%and 42%respectively.More ice melting in BSN is the main reason for phytoplankton proliferation.In 2010,there was an unusual peak of CHL concentration in GSN.The sea-sonal peaks of CHL appeared two weeks earlier in BS than in GS.The earlier and more extensive ice melting and the persistent nega-tive North Atlantic Oscillation(NAO)index may be the reasons for higher CHL blooms in 2010.The spatial average ICE concentra-tion of BS in BSN and BSS is 27%and 1.2%respectively.Negative NAO in the previous winter may lead to an increase in ICE in spring.NAO has a great influence on CHL and ICE in GS.Ice melting is positively correlated with CHL,especially in GS in recent decades,CHL has a significant positive correlation with surface mass concentration of dimethylsulfide(DMS),especially in GS.As an indicator of Arctic warming,BS needs more attention from Arctic researchers.展开更多
Biogenetic sulfide dimethylsulfide(DMS)plays a major role on the global climate,especially in Arctic Ocean.Accurate simulate DMS concentration is an important task.Here we introduced both biogeochemical depth-averaged...Biogenetic sulfide dimethylsulfide(DMS)plays a major role on the global climate,especially in Arctic Ocean.Accurate simulate DMS concentration is an important task.Here we introduced both biogeochemical depth-averaged model G93 and its extension model-one dimensional DMS model.Both surface concentrations,vertical profiles of chlorophyll(CHL)and DMS are simulated using the two models within southern Greenland Sea(0°E–10°E,70°N–75°N)during year 2012.As the input data for the models simulations,the spatial monthly mean of methodology forcings including sea surface temperature(SST),wind speed(WIND),cloud cover(CLD),sea ice concentration(ICE)and mixed layer depth(MLD)are calculated.Satellite 8-day time series of chlorophyll-a(CHL)are used as observation data for CHL related parameter calibrations.Simó’s imperial formula is used as the monthly DMS observation data.The Genetic Algorithm technique is used for the parameter calibrations.The simulation results show that the most DMS related surface concentrations exhibit the normal distributions with peak during May.CHL,DMS and DMSP(dimethylsulphoniopropionate)vertical profiles are obtained for July,August and September in year 2012.CHL had the higher variation of subsurface concentration maximum(SCM)in July with the lower surface concentration value.DMS had surface higher and subsurface lower profile for the all three months.DMSP also had subsurface high in July.The SCM CHL diurnal variation in the subsurface also can be resulted from diurnal changes in MLD and vertical mixing variations,plus photolysis and wind-driven ventilations.展开更多
The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentia...The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L^(−1) with a mean value of 2.76 nmol L^(−1).DMS sea-air flux ranges from 2.66 to 5.00mmol m^(−2) d^(−1) with mean of 3.80mmol m^(−2) d^(−1).Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS.展开更多
Coral reefs produce atmospheric dimethylsulfide (DMSa) which oxidises to non-sea-salt (nss) sulfate aerosols, precursors of cloud condensation nuclei (CCN) and low level cloud (LLC), reducing solar radiation and regul...Coral reefs produce atmospheric dimethylsulfide (DMSa) which oxidises to non-sea-salt (nss) sulfate aerosols, precursors of cloud condensation nuclei (CCN) and low level cloud (LLC), reducing solar radiation and regulating sea surface temperatures (SSTs). Here we report measurements of solar radiation, SST, LLC, DMS flux, , and rainfall before, during and after a major coral bleaching event at Magnetic Island in the central Great Barrier Reef (GBR). Measurements are compared with those made at the nearby fringing reef of Or-pheus Island where coral bleaching did not occur. Extreme solar radiation levels occurred from November to late January and could have reflected cloud radiative effects that increased downwelling of solar radiation. High levels of LLC often coincided with high periodic fluxes of DMS from the unbleached coral reef at Orpheus Island (e.g. 14 - 20 μmol·m-2·d-1), in direct contrast to the very low fluxes of DMS that were emitted from the bleached, human-impacted Magnetic Island fringing reef (nd-0.8 μmol·m-2·d-1) when SSTs were >30°C. Continuous SSTs measurements at the Magnetic Island reef revealed various heating and cooling periods, interspersed with stable SSTs. Cooling periods (negative climate feedback) ranged from -1°C to -3°C (7 day mean -1.6°C), and often seemed to occur during low tides, periodic pulses of DMS flux and LLC, keeping SSTs °C. In contrast warming periods of +1°C to +3°C (positive climate feedback, 7 day mean +1.52°C), seemed to occur during increasing tides, decreasing DMS flux and low to medium levels of LLC which increased solar radiation and caused SSTs over 30°C and corals to bleach. Alternation between these two states or types of feedback is indicated in this research and may be a function of enhanced scattering of solar radiation from nss-sulfate aerosols that originate from oxidation of DMSa produced from the coral reefs in the GBR. The net radiative forcing from clouds can be as high as four times as large as the radiative forcing from a doubling of CO2 levels in the atmosphere, which needs to be taken into account when ascribing coral bleaching events in the GBR solely to GHG warming. Further studies are needed to more critically assess the importance of this GBR coral reef-cloud feedback to the climate of northern Australia and the western Pacific, where the greatest biomass of coral reefs occurs.展开更多
Dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP...Dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species.Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS.The results demonstrated that both algal species could produce DMS,but the average concentration of DMS per cell in S.trochoidea(12.63 fmol/L) was about six times that in P.minimum(2.01 fmol/L).DMS and DMSP concentrations in algal cultures varied significantly at different growth stages,with high release during the late stationary growth phase and the senescent phase.DMS production induced by three salinities(22,28,34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity,which might result from intra-cellular DMSP up-regulation with the change of osmotic stress.Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production,and clarifies the influence of salinity conditions on the release of DMS and DMSP.As S.trochoidea and P.minimum are harmful algal bloom species with high DMS production,they might play an additional significant role in the sulfur cycle when a red tide occurs.展开更多
文摘Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.
文摘Dimethylsulfide(DMS) measurements in the surface seawater of China eastern coastline were conducted during March 9—10, 1993 in Bohai Sea along the cruise from Dalian to Tianjin and during September 24—25, 1994 in Yellow Sea along the cruise from Shanghai to Qingdao. On the cruise in Bohai Sea DMS concentrations varied from 0.11 to 2.63 nmol/L with an average of 1.31 nmol/L, while DMS flux was estimated to be 0.85 μmol/(m 2·d) with the range of 0.04—3.12 μmol/(m 2·d). On the cruise in Yellow Sea DMS concentrations varied from 0.95 to 7.48 nmol/L with an average of 2.89 nmol/L, and DMS flux was estimated to be 7.94 μmol/(m 2·d) with the range of 0.11—18.88 μmol/(m 2·d). Variations in DMS concentrations along the latitude in Yellow Sea were observed larger than those along the longitude in Bohai Sea. DMS concentrations and fluxes had a similar spatial trend both in Bohai Sea and Yellow Sea with the correlation coefficients of 0.75 and 0.64, respectively.
基金The National Natural Science Foundation of China under contract Nos 40476034, 40525017 and 40490265 the Science and Technology Key Project of Shandong Province, China under contract No 2006GG2205024the Taishan Mountain Scholar Construction Engineering Special Fund of Shandong Province, China
文摘The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concen- trations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the mi- crolayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPpchlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m^2·d), which highlights the effects of human impacts on DMS emission.
基金Supported by the National Natural Science Foundation of China(Nos. 41030858 and 40525017)the Changjiang Scholars Program,Ministry of Education of China,the Science and Technology Key Project of Shandong Province (No. 2006GG2205024)the Taishan Scholars Program of Shandong Province
文摘The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate(DMSP) and dimethylsulfide(DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum,an ecologically important species.Changes in salinity from 20-32 caused no measurable variation in cell growth or culture yield,but increased intracellular DMSP per cell by 30%.Nitrogen limitation caused up to a two-fold increase in total DMSP per cell and up to a three-fold increase in DMS per cell.These changes in DMSP and DMS per cell in the Skeletonema costatum cultures with nitrogen limitation and changing salinity were primarily attributed to the physiological functions of DMSP as an osmolyte and an antioxidant.The data obtained in this study indicated that nitrogen limitation and salinity may play an important role in climate feedback mechanisms involving biologically derived DMS.
基金Supported by the National Natural Science Foundation of China(Nos.41320104008,41030858,41306069)the National Natural Science Foundation for Creative Research Groups(No.41221004)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110132120010)the Cheung Kong Scholars Program of Chinathe Taishan Scholar Program of Shandong Provincethe Fundamental Research Funds for the Central Universities
文摘The distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in surface water of the Yellow Sea and the Bohai Sea were studied during June 2011. The mean concentrations and ranges of DMS, dissolved DMSP (DMSPd), and particulate DMSP (DMSPp) in surface waters were 6.85 (1.60-12.36), 7.25 (2.28-19.05) and 61.87 (6.28-224.01) nmol/L, respectively. There were strong correlations between DMSPp and chlorophyll a in the Bohai Sea and the North Yellow Sea, respectively, and concentrations of DMS and DMSP were high, with a relatively high proportion of dinoflagellates, in the region of the South Yellow Sea Cold Water Mass. Results show that phytoplankton biomass and species composition were important factors that controlled the distribution of DMS and DMSP. Complex environmental factors, including nutrients, transparency, and terrestrial runoff, might also influence the variability in DMS and DMSP. Biological production and consumption rates of DMS in the Bohai Sea were higher than those in the Yellow Sea. DMS production rates were closely correlated with DMSPd concentrations. DMS and DMSP exhibited obvious diel variations, with high concentrations occurring in the late afternoon (16:00-19:00) and low concentrations occurring during the night, implying that the intensity of solar radiation had a significant influence on these variations. Size distributions of chlorophyll a and DMSPp were also investigated and large nanoplankton (5-20 μm), mainly diatoms, contributed significantly to chlorophyll a and DMSPp at most stations. The average sea-to-air flux of DMS in the study area was estimated to be 11.07 μmol/(m^2·d) during the summer.
基金We greatly acknowledge the support provided for this research by the National Natural Science Foundation of China under contract Nos 40476034,40525017 and 40490265We are also grateful for the support of Key Project of Ministry of Education,China under contract No.105105+1 种基金the Program for New Century Excellent Talents in University,Ministry of Education under contract No.NCET-04-0643Taishan Mountain Scholar Construction Engineering Special Fund of Shandong Province,China.
文摘Dimethylsulfide (DMS) is generally thought to be lost from the surface oceans by evasion into the atmosphere as well as consumption by microbe. However, photochemical process might be important in the removal of DMS in the oceanic photic zone. A kinetic investigation into the photochemical oxidation of DMS in seawater was performed. The photo-oxidation rates of DMS were influenced by various factors including the medium, dissolved oxygen, photosensitizers, and heavy metal ions. The photo-oxidation rates of DMS were higher in seawater than in distilled water, presumably due to the effect of salinity existing in seawater. Three usual photosensitizers (humic acid, fulvic acid and anthroquinone), especially in the presence of oxygen, were able to enhance the photo-oxidation rate of DMS, with the fastest rate observed with anthroquinone. Photo-oxidation of DMS followed first order reaction kinetics with the rate constant ranging from 2.5 × 10^-5 to 34.3 × 10^-5. Quantitative analysis showed that approximately 32% of the photochemically removed DMS was converted to dimethylsulfoxide. One of the important findings was that the presence of Hg^2 + could markedly accelerate the photo-oxidation rate of DMS in seawater. The mechanism of mercuric catalysis for DMS photolysis was suggested according to the way of CTTM ( charge transfer to metal) of DMS - Hg^2+ complex.
基金The National Natural Science Foundation of China under contract Nos 40525017 and 40476034the Changjiang Scholars Programme,Ministry of Education of China+1 种基金the Science and Technology Key Project of Shandong Province under contract No.2006GG2205024the "Taishan Scholar" Special Research Fund of Shandong Province,China
文摘The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.
基金the National Natural Science Foundation of China (Nos. 41276097 and 11701298) for providing research funding for this project
文摘Time-series of chlorophyll-a(CHL),a proxy for phytoplankton biomass,and various satellite-derived climate indicators are compared in a region of the Subantarctic Southern Ocean(40°-60°S,110°-140°E)for years 2012-2014.CHL reached a minimum in winter(June)and a maximum in late summer(early February).Zonal mean CHL decreased towards the south.Mean sea surface temperature(SST)ranged between 8℃and 15℃and peaked in late February.CHL and SST were positively correlated from March to June,negatively correlated from July to September.CHL and wind speed(WIND)were negatively correlated with peak WIND occurred in winter.Wind direction(WIRD)was mostly in the southwest to westerly direction.The Antarctic Oscillation index(AAO)and CHL were negatively correlated(R=−0.58),indicating that as synoptic wind systems move southwards,CHL increases,and conversely when wind systems move northwards,CHL decreases.A genetic algorithm is used to calibrate the biogeochemical DMS model’s key parameters.Under 4×CO2(after year 2100)Regional mean SST increases 12%-17%,WIND increases 1.2ms−1,Cloud Cover increases 4.8%and mixed layer depth(MLD)decreases 48m.The annual CHL increases 6.3%.The annual mean DMS flux increase 25.2%,increases 37%from day 1 to day 280 and decrease 3%from day 288 to day 360.The general increase of DMS flux under 4×CO2 conditions indicates the Subantarctic regional climate would be affected by changes in the DMS flux,with the potential for a cooling effect in the austral summer and autumn.
文摘The effects of selected environmental variables on the production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by laboratory batch cultures of microalgae were studied. The variations of DMS and DMSP output with algae growth and variations in nutrients and salinity are reported.
基金Supported by the National Natural Science Foundation of China(No.41176062)
文摘We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.
基金The National Natural Science Foundation of China under contract No.41276097
文摘The sea-to-air flux of dimethylsulphide(DMS) is one of the major sources of marine biogenic aerosol, and can have an important radiative impact on climate, especially in the Arctic Ocean. Satellite-derived aerosol optical depth(AOD) is used as a proxy for aerosol burden which is dominated by biogenic aerosol during summer and autumn. The spring sea ice melt period is a strong source of aerosol precursors in the Arctic. However, high aerosol levels in early spring are likely related to advection of continental pollution from the south(Arctic haze).Higher AOD was generally registered in the southern part of the study region. Sea ice concentration(SIC) and AOD were positively correlated, while cloud cover(CLD) and AOD were negative correlation. The seasonal peaks of SIC and CLD were both one month ahead of the peak in AOD. There is a strong positive correlation between AOD and SIC. Melting ice is positively correlated with chlorophyll a(CHL) almost through March to September,but negatively correlated with AOD in spring and early summer. Elevated spring and early summer AOD most likely were influenced by combination of melting ice and higher spring wind in the region. The peak of DMS flux occurred in spring due to the elevated spring wind and more melting ice. DMS concentration and AOD were positively correlated with melting ice from March to May. Elevated AOD in early autumn was likely related to the emission of biogenic aerosols associated with phytoplankton synthesis of DMS. The DMS flux would increase more than triple by 2100 in the Greenland Sea. The significant increase of biogenic aerosols could offset the warming in the Greenland Sea.
基金The National Natural Science Foundation of China under contract Nos 41320104008,41306069 and 41106071the Changjiang Scholars Programme,the Ministry of Education of China+1 种基金the Taishan Scholar Programme of Shandong Provincethe Fundamental Research Funds for the Central Universities
文摘Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.
基金financially supported by the National Key Research and Development Program of China (No.2016YFA06 01301)the National Natural Science Foundation of China (Nos.41176062,41676065)the Fundamental Research Funds for the Central Universities (No.201564015)
文摘The distributions and relationships of O_2, CO_2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O_2 saturation level, partial pressure of CO_2 (pCO_2), and DMS concentrations (and ranges) were 110% (89%–167%), 374μatm (91–640 μatm), and 8.53 nmol L^(-1) (1.10–27.50 nmol L^(-1)), respectively. The sea-to-air fluxes (and ranges) of DMS and CO_2 were 8.24 μmol m^(-2)d^(-1) (0.26–62.77 μmol m^(-2)d^(-1)), and -4.7 mmol m^(-2)d^(-1) (-110.8-31.7 mmol m^(-2)d^(-1)), respectively. Dissolved O_2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO_2. The pCO_2 was significantly and negatively correlated with the O_2 saturation level, while the DMS concentration showed different positive relationships with the O_2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123?E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative de-composition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O_2 and produced additional CO_2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations ap-peared between the O_2 saturation level, pCO_2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O_2, CO_2, and DMS.
文摘Measurements of dimethylsulfide (DMS) concentrations in surface seawater and vertical profiles at sixteen stations in the Nansha Islands waters of the South China Sea showed that surface seawater DMS concentrations ranged from S 52 to 122 ng/L, average of 82 ng/L. DMS distribution tendency coincided with that of primary productivity observed during the same cruise. In vertical profiles, the DMS distribution was influenced by factors such as algal biomass, as indicated by chlorophyll a, particular algal species, consumption by photochemical oxidation, etc. Maximal DMS concentrations appeared at 30-75 m depths. DMS concentration was significantly correlated to seawater temperature. The sea to air DMS flux from this sea area was estimated to be 5.95 μmol/(m 2·d).
文摘DMS (dimethylsulfide), a breakdown product of cellular solutes of many species of macroalgae andphytoplankton plays an important role in regulating global climate and counteracting partly the "greenhouse" effect.In this paper, the advance and prospects of DMS study are reviewed and discussed with respectto DMS sample storage, measurement and importance in regulating global climate and the acidity ofrain and aerosol.
基金the National Natural Science Foundation of China(No.41276097)for providing research funding for this project.
文摘Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)in the Greenland Sea region(GS)(20˚W–10˚E,70˚–80˚N)and the Barents Sea region(BS)(30˚–50˚E,70˚–80˚N)are analysed and com-pared.Higher CHL was observed in BS,about 60%higher than that in GS.Compared with the northern regions of BS and GS(BSN and GSN),CHL in the southern region of BS and GS(BSS and GSS)increased by 77%and 42%respectively.More ice melting in BSN is the main reason for phytoplankton proliferation.In 2010,there was an unusual peak of CHL concentration in GSN.The sea-sonal peaks of CHL appeared two weeks earlier in BS than in GS.The earlier and more extensive ice melting and the persistent nega-tive North Atlantic Oscillation(NAO)index may be the reasons for higher CHL blooms in 2010.The spatial average ICE concentra-tion of BS in BSN and BSS is 27%and 1.2%respectively.Negative NAO in the previous winter may lead to an increase in ICE in spring.NAO has a great influence on CHL and ICE in GS.Ice melting is positively correlated with CHL,especially in GS in recent decades,CHL has a significant positive correlation with surface mass concentration of dimethylsulfide(DMS),especially in GS.As an indicator of Arctic warming,BS needs more attention from Arctic researchers.
文摘Biogenetic sulfide dimethylsulfide(DMS)plays a major role on the global climate,especially in Arctic Ocean.Accurate simulate DMS concentration is an important task.Here we introduced both biogeochemical depth-averaged model G93 and its extension model-one dimensional DMS model.Both surface concentrations,vertical profiles of chlorophyll(CHL)and DMS are simulated using the two models within southern Greenland Sea(0°E–10°E,70°N–75°N)during year 2012.As the input data for the models simulations,the spatial monthly mean of methodology forcings including sea surface temperature(SST),wind speed(WIND),cloud cover(CLD),sea ice concentration(ICE)and mixed layer depth(MLD)are calculated.Satellite 8-day time series of chlorophyll-a(CHL)are used as observation data for CHL related parameter calibrations.Simó’s imperial formula is used as the monthly DMS observation data.The Genetic Algorithm technique is used for the parameter calibrations.The simulation results show that the most DMS related surface concentrations exhibit the normal distributions with peak during May.CHL,DMS and DMSP(dimethylsulphoniopropionate)vertical profiles are obtained for July,August and September in year 2012.CHL had the higher variation of subsurface concentration maximum(SCM)in July with the lower surface concentration value.DMS had surface higher and subsurface lower profile for the all three months.DMSP also had subsurface high in July.The SCM CHL diurnal variation in the subsurface also can be resulted from diurnal changes in MLD and vertical mixing variations,plus photolysis and wind-driven ventilations.
基金the Naval Research Laboratory Remote Sensing Divisionthe Naval Center for Space Technology,and the National Polar-orbiting Operational Environmental Satellite System(NPOESS)Integrated Program Office(IPO)for providing satel lite-based WIND and SST data.
文摘The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L^(−1) with a mean value of 2.76 nmol L^(−1).DMS sea-air flux ranges from 2.66 to 5.00mmol m^(−2) d^(−1) with mean of 3.80mmol m^(−2) d^(−1).Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS.
文摘Coral reefs produce atmospheric dimethylsulfide (DMSa) which oxidises to non-sea-salt (nss) sulfate aerosols, precursors of cloud condensation nuclei (CCN) and low level cloud (LLC), reducing solar radiation and regulating sea surface temperatures (SSTs). Here we report measurements of solar radiation, SST, LLC, DMS flux, , and rainfall before, during and after a major coral bleaching event at Magnetic Island in the central Great Barrier Reef (GBR). Measurements are compared with those made at the nearby fringing reef of Or-pheus Island where coral bleaching did not occur. Extreme solar radiation levels occurred from November to late January and could have reflected cloud radiative effects that increased downwelling of solar radiation. High levels of LLC often coincided with high periodic fluxes of DMS from the unbleached coral reef at Orpheus Island (e.g. 14 - 20 μmol·m-2·d-1), in direct contrast to the very low fluxes of DMS that were emitted from the bleached, human-impacted Magnetic Island fringing reef (nd-0.8 μmol·m-2·d-1) when SSTs were >30°C. Continuous SSTs measurements at the Magnetic Island reef revealed various heating and cooling periods, interspersed with stable SSTs. Cooling periods (negative climate feedback) ranged from -1°C to -3°C (7 day mean -1.6°C), and often seemed to occur during low tides, periodic pulses of DMS flux and LLC, keeping SSTs °C. In contrast warming periods of +1°C to +3°C (positive climate feedback, 7 day mean +1.52°C), seemed to occur during increasing tides, decreasing DMS flux and low to medium levels of LLC which increased solar radiation and caused SSTs over 30°C and corals to bleach. Alternation between these two states or types of feedback is indicated in this research and may be a function of enhanced scattering of solar radiation from nss-sulfate aerosols that originate from oxidation of DMSa produced from the coral reefs in the GBR. The net radiative forcing from clouds can be as high as four times as large as the radiative forcing from a doubling of CO2 levels in the atmosphere, which needs to be taken into account when ascribing coral bleaching events in the GBR solely to GHG warming. Further studies are needed to more critically assess the importance of this GBR coral reef-cloud feedback to the climate of northern Australia and the western Pacific, where the greatest biomass of coral reefs occurs.
基金Supported by the National Natural Science Foundation of China(Nos. 40525017 and 41030858)the Changjiang Scholars Program,Ministry of Education of China,and the National Basic Research Program of China (973 Program) (No. 2010CB428904)
文摘Dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species.Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS.The results demonstrated that both algal species could produce DMS,but the average concentration of DMS per cell in S.trochoidea(12.63 fmol/L) was about six times that in P.minimum(2.01 fmol/L).DMS and DMSP concentrations in algal cultures varied significantly at different growth stages,with high release during the late stationary growth phase and the senescent phase.DMS production induced by three salinities(22,28,34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity,which might result from intra-cellular DMSP up-regulation with the change of osmotic stress.Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production,and clarifies the influence of salinity conditions on the release of DMS and DMSP.As S.trochoidea and P.minimum are harmful algal bloom species with high DMS production,they might play an additional significant role in the sulfur cycle when a red tide occurs.