In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot ...In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.展开更多
This paper proposes a hybrid layered asymmetrically clipped optical(HLACO) single-carrier frequency-division multiplexing(SCFDM) scheme for dimmable visible light communication. It designs a signal structure that comb...This paper proposes a hybrid layered asymmetrically clipped optical(HLACO) single-carrier frequency-division multiplexing(SCFDM) scheme for dimmable visible light communication. It designs a signal structure that combines layered asymmetrically clipped optical(LACO)-SCFDM and negative LACO-SCFDM in proportion for improving the inherent weaknesses of orthogonal frequency-division multiplexing(OFDM)-based dimmable schemes and further enhancing the system performance. Compared to the HLACO-OFDM-based dimming scheme, it obtains a lower bit error ratio and enables efficient communication over broader dimming range. Its spectral efficiency realizes 2.875 bit·s^(-1)·Hz^(-1) within the dimming range of 30%–70%, and the attainable average spectral efficiency gains exceed at least 19.21% compared to other traditional dimmable schemes.展开更多
This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of b...This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.展开更多
文摘In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 61771062)the Fund of the StateKeyLaboratoryofIPOC(BUPT),China (No. IPOC2018ZT08)。
文摘This paper proposes a hybrid layered asymmetrically clipped optical(HLACO) single-carrier frequency-division multiplexing(SCFDM) scheme for dimmable visible light communication. It designs a signal structure that combines layered asymmetrically clipped optical(LACO)-SCFDM and negative LACO-SCFDM in proportion for improving the inherent weaknesses of orthogonal frequency-division multiplexing(OFDM)-based dimmable schemes and further enhancing the system performance. Compared to the HLACO-OFDM-based dimming scheme, it obtains a lower bit error ratio and enables efficient communication over broader dimming range. Its spectral efficiency realizes 2.875 bit·s^(-1)·Hz^(-1) within the dimming range of 30%–70%, and the attainable average spectral efficiency gains exceed at least 19.21% compared to other traditional dimmable schemes.
文摘This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.