Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using t...Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.展开更多
This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationsh...This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationship between strongly Ding projective modules and strongly Ding flat modules with respect to a semidualizing module is characterized.Some well-known results on strongly Ding projective modules, n-strongly Ding projective modules and strongly D_C-projective modules are generalized and unified.展开更多
Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some tri...Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some triangle equivalences. Assume DP is precovering. We show that Db DP(R) ≌K-,dpb(DP) and Dbpsg(R) ≌ DbDdefect(R). We prove that each R-module is of finite Ding projective dimension if and only if Dbdpsg(R) = 0.展开更多
In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-mod...In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-module for all m ∈ Z.展开更多
We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply...We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering.展开更多
文摘Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.
基金Supported by the Postdoctoral Science Foundation of China(2017M611851), the Jiangsu Planned Projects for Postdoctoral Research Funds(1601151C) and the Provincial Natural Science Foundation of Anhui Province(KJ2017A040)
文摘This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationship between strongly Ding projective modules and strongly Ding flat modules with respect to a semidualizing module is characterized.Some well-known results on strongly Ding projective modules, n-strongly Ding projective modules and strongly D_C-projective modules are generalized and unified.
基金Supported by National Natural Science Foundation of China(Grant Nos.11261050,11361051 and 11361052)Program for New Century Excellent Talents in University(Grant No.NCET-13-0957)
文摘Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some triangle equivalences. Assume DP is precovering. We show that Db DP(R) ≌K-,dpb(DP) and Dbpsg(R) ≌ DbDdefect(R). We prove that each R-module is of finite Ding projective dimension if and only if Dbdpsg(R) = 0.
基金Supported by National Natural Science Foundation of China(Grant Nos.11561039 and 11761045)Natural Science Foundation of Gansu Province of China(Grant No.17JR5RA091)
文摘In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-module for all m ∈ Z.
文摘We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering.