This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
In this paper, we introduce the concepts of the conesweak subdifferential and the cone-weak direction derivative of convex set-valued mapping in a locally convex topological vector space. We study the relationship bet...In this paper, we introduce the concepts of the conesweak subdifferential and the cone-weak direction derivative of convex set-valued mapping in a locally convex topological vector space. We study the relationship between them and obtain some important results.展开更多
In this paper, we give an upper estimate for the Clarke-Rockafellar directional derivatives of a function of the form f - g, where f, g are max-functions defined by locally Lipschitz but not necessarily differentiable...In this paper, we give an upper estimate for the Clarke-Rockafellar directional derivatives of a function of the form f - g, where f, g are max-functions defined by locally Lipschitz but not necessarily differentiable functions on a closed convex set in a Euclidean space. As an application, we give a sufficient condition for f - g to have an error bound.展开更多
In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional d...In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional derivatives. The result extends the corresponding result of [D. Bednarik and K. Pastor, Math. Program. Ser. A, 113(2008), 283-298] to constrained optimization problems.展开更多
In this article we prove that some of the sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Luc [Appl. Math., 51, 5-36 (2006)] generalize (strictly) those presented by Guerraggio, Luc...In this article we prove that some of the sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Luc [Appl. Math., 51, 5-36 (2006)] generalize (strictly) those presented by Guerraggio, Luc [J. Optim. Theory Appl., 109, 615-629 (2001)]. While the former paper shows examples for which the conditions given there are effective but the ones from the latter paper fail, it does not prove that generally the conditions it proposes are stronger. In the present note we complete this comparison with the lacking proof.展开更多
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
文摘In this paper, we introduce the concepts of the conesweak subdifferential and the cone-weak direction derivative of convex set-valued mapping in a locally convex topological vector space. We study the relationship between them and obtain some important results.
基金The National Natural Science Foundation for the Youth(10901004)the Zizhu Science Foundation of Beifang University of Nationalities(2011ZQY024)the Key Project of Science and Technology of Ministry of Education(212204)
基金Supported by the National Natural Science Foundation of China (No. 10801137)
文摘In this paper, we give an upper estimate for the Clarke-Rockafellar directional derivatives of a function of the form f - g, where f, g are max-functions defined by locally Lipschitz but not necessarily differentiable functions on a closed convex set in a Euclidean space. As an application, we give a sufficient condition for f - g to have an error bound.
基金The Graduate Students Innovate Scientific Research Program (YJSCX2008-158HLJ) of Heilongjiang Provincesupported by the Distinguished Young Scholar Foundation (JC200707) of Heilongjiang Province of China
文摘In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional derivatives. The result extends the corresponding result of [D. Bednarik and K. Pastor, Math. Program. Ser. A, 113(2008), 283-298] to constrained optimization problems.
基金Supported by the Council of Czech Government (MSM 6198959214)
文摘In this article we prove that some of the sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Luc [Appl. Math., 51, 5-36 (2006)] generalize (strictly) those presented by Guerraggio, Luc [J. Optim. Theory Appl., 109, 615-629 (2001)]. While the former paper shows examples for which the conditions given there are effective but the ones from the latter paper fail, it does not prove that generally the conditions it proposes are stronger. In the present note we complete this comparison with the lacking proof.