We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state...We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system, with which the ground-state-continuum-state transition dipole is evaluated. The comparison between the odd–even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd–even harmonics from asymmetric molecules, providing deep insights into the relation between the odd–even HHG and the asymmetric molecular orbital.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11274090)the Fundamental Research Funds for the Central Universities,China(Grant No.SNNU.GK201403002)
文摘We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system, with which the ground-state-continuum-state transition dipole is evaluated. The comparison between the odd–even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd–even harmonics from asymmetric molecules, providing deep insights into the relation between the odd–even HHG and the asymmetric molecular orbital.