DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond ...DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond reduces the thermal expansion coefficientin horizontal direction only slightly above theTEC of the ceramic itself. This allows directsilicon attach of large dies without using TECcontrolling layers.As DBC technology is using copper foils,integralleads overhanging the ceramic can be realized...展开更多
Ceramic-copper substrate is used to achieve the combination between copper and ceramic(Al_(2)O_(3) or AlN)under high temperatures by bonding or brazing process,then through dedicate lamination–etching technology to d...Ceramic-copper substrate is used to achieve the combination between copper and ceramic(Al_(2)O_(3) or AlN)under high temperatures by bonding or brazing process,then through dedicate lamination–etching technology to develop the designed layout in copper surface,finally parts go with plating and singulation process for surface treatment before shipping to the end-user.Ceramic-copper substrate has perfect performance in terms of insulation,thermal conductivity,solderability,and adhesion strength.Besides,the copper on surface can afford huge current due to the fact that ceramic has good reliability and thermal-cycling performance.According to technical visit and audit to suppliers’manufacturing process and based on several years’experience of mass production for electric vehicle power module package,this article introduces two mainstream ceramic-copper substrate processing methods currently on the market:direct bond copper(DBC)and active metal brazing(AMB)which can be widely used for the intelligent power module and electric vehicle power module,also introduces the major failure mode during application and analyzes the root cause for each failure mode,clarifies key incoming monitoring method,like crosshatch,silver plating thickness measurement and blister test.This article also clarifies the Incoming Quality Control system,which can provide guidance to process engineer during the application.展开更多
文摘DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond reduces the thermal expansion coefficientin horizontal direction only slightly above theTEC of the ceramic itself. This allows directsilicon attach of large dies without using TECcontrolling layers.As DBC technology is using copper foils,integralleads overhanging the ceramic can be realized...
基金Project was supported by the Shenzhen STS Microelectronics Co-Ltd.
文摘Ceramic-copper substrate is used to achieve the combination between copper and ceramic(Al_(2)O_(3) or AlN)under high temperatures by bonding or brazing process,then through dedicate lamination–etching technology to develop the designed layout in copper surface,finally parts go with plating and singulation process for surface treatment before shipping to the end-user.Ceramic-copper substrate has perfect performance in terms of insulation,thermal conductivity,solderability,and adhesion strength.Besides,the copper on surface can afford huge current due to the fact that ceramic has good reliability and thermal-cycling performance.According to technical visit and audit to suppliers’manufacturing process and based on several years’experience of mass production for electric vehicle power module package,this article introduces two mainstream ceramic-copper substrate processing methods currently on the market:direct bond copper(DBC)and active metal brazing(AMB)which can be widely used for the intelligent power module and electric vehicle power module,also introduces the major failure mode during application and analyzes the root cause for each failure mode,clarifies key incoming monitoring method,like crosshatch,silver plating thickness measurement and blister test.This article also clarifies the Incoming Quality Control system,which can provide guidance to process engineer during the application.