由于长短码直扩码分多址(LSC-DS-CDMA)信号包含了多个用户的长码和短码,已有的直扩码分多址信号的盲伪码估计方法不再适用。为此该文提出一种基于矩阵填充和三阶相关的伪码估计方法。首先从理论上将结构复杂的LSC-DS-CDMA信号构建为多...由于长短码直扩码分多址(LSC-DS-CDMA)信号包含了多个用户的长码和短码,已有的直扩码分多址信号的盲伪码估计方法不再适用。为此该文提出一种基于矩阵填充和三阶相关的伪码估计方法。首先从理论上将结构复杂的LSC-DS-CDMA信号构建为多用户短码扩频的缺失矩阵模型,将复合码矩阵估计建模为盲源信号分离问题;然后将矩阵填充理论应用于复合码矩阵估计,提出基于奇异值阈值算法和快速独立成分分析算法的各用户复合码序列估计方法;最后利用m序列的移位相加性特性,提出延迟三阶相关算法,从各用户复合码序列中估计其包含的长短伪码序列。仿真表明,当信噪比高于-2 d B时,该文算法的长短伪码估计平均误码率低于0.1%。展开更多
针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首...针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首先将已分段的一周期DS-CDMA信号作为NN的输入信号,用NN各权值向量的符号函数代表DS-CDMA信号各用户的伪码序列,然后通过不断输入信号来反复训练权值向量直至收敛,最终DS-CDMA信号各用户的伪码序列就可以通过各权值向量的符号函数重建出来。此外,采用变步长以提高收敛速度。理论分析与仿真实验表明,LEAP NN至少可以实现-20 d B信噪比下10个用户的非等功率同步DS-CDMA伪码序列盲估计,并且比传统的Sanger NN具有更快的收敛速度。展开更多
文摘由于长短码直扩码分多址(LSC-DS-CDMA)信号包含了多个用户的长码和短码,已有的直扩码分多址信号的盲伪码估计方法不再适用。为此该文提出一种基于矩阵填充和三阶相关的伪码估计方法。首先从理论上将结构复杂的LSC-DS-CDMA信号构建为多用户短码扩频的缺失矩阵模型,将复合码矩阵估计建模为盲源信号分离问题;然后将矩阵填充理论应用于复合码矩阵估计,提出基于奇异值阈值算法和快速独立成分分析算法的各用户复合码序列估计方法;最后利用m序列的移位相加性特性,提出延迟三阶相关算法,从各用户复合码序列中估计其包含的长短伪码序列。仿真表明,当信噪比高于-2 d B时,该文算法的长短伪码估计平均误码率低于0.1%。
文摘针对特征分解方法在实现非等功率同步直接序列码分多址(DS-CDMA)信号伪码序列盲估计时存在的处理数据向量不能太长以及不能工作于非平稳环境中的问题,引入了一种由主分量分析实现自适应特征提取的在线无监督学习(LEAP)神经网络(NN)。首先将已分段的一周期DS-CDMA信号作为NN的输入信号,用NN各权值向量的符号函数代表DS-CDMA信号各用户的伪码序列,然后通过不断输入信号来反复训练权值向量直至收敛,最终DS-CDMA信号各用户的伪码序列就可以通过各权值向量的符号函数重建出来。此外,采用变步长以提高收敛速度。理论分析与仿真实验表明,LEAP NN至少可以实现-20 d B信噪比下10个用户的非等功率同步DS-CDMA伪码序列盲估计,并且比传统的Sanger NN具有更快的收敛速度。