To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the prepa...To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method.The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS),and infrared spectroscopy of adsorbed probe ammonia molecules.The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique.The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes.It is explained that,the structure,the oxidation states,and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoOx to the Pt-based catalysts.展开更多
Three co-impregnation/chemical reduction methods in acidic solutions of pH 〈 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% p...Three co-impregnation/chemical reduction methods in acidic solutions of pH 〈 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% platinum per carbon were prepared by the three methods; their morphology and electrocatalytic activities were characterized.The 20 wt.% Pt-WO3/C catalyst prepared by the co-impregnation/EG method presented the optimal dispersion with an average particle size of 4.6 nm and subsequently the best electrocatalytic activity,and so,it was further characterized.Its anodic peak current density for ethanol oxidation from linear sweep voltammetry (LSV) is 7.9 mA·cm^-2,which is 1.4 and 5.2 times as high as those of the catalysts prepared by co-impregnation/NaBH4 and co-impregnation/ HCOOH reduction methods,2.1 times as high as that of the 10 wt.% Pt-WO3/C catalyst prepared by co-impregnation/EG method,respectively.展开更多
Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces chall...Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces challenges, primarily due to the inadequate performance of anode and cathode catalysts. Pd-based materials have shown exceptional catalytic activity for both the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR). Alloying noble metals with rare earth elements has emerged as an effective strategy to further enhance the catalytic activity by modulating the electronic structure. In this study, we synthesized a series of palladium-rare earth (Pd3RE) alloys supported on carbon to serve as bifunctional catalysts that efficiently promote both ORR and EOR. Compared to Pd/C, the Pd3Tb/C catalyst exhibits 3.1-fold and 1.8-fold enhancement in activity for ORR and EOR, respectively. The charge transfer in the Pd3Tb/C results in an electron-rich Pd component, thereby weakening the binding energy with oxygen species and facilitating the two reactions.展开更多
Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts ...Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells.展开更多
基金supported by the International Science and Technology Cooperation Program of China (No. 2006DFA61240)
文摘To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells,carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method.The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD),transmission electron microscopy (TEM),X-ray photoelectron spectroscopy (XPS),and infrared spectroscopy of adsorbed probe ammonia molecules.The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique.The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes.It is explained that,the structure,the oxidation states,and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoOx to the Pt-based catalysts.
基金supported by the National Basic Research and Development Program of China (No. 2009CB220100)Beijing Excellent Talent Support Program (No. 20071D1600300396)
文摘Three co-impregnation/chemical reduction methods in acidic solutions of pH 〈 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% platinum per carbon were prepared by the three methods; their morphology and electrocatalytic activities were characterized.The 20 wt.% Pt-WO3/C catalyst prepared by the co-impregnation/EG method presented the optimal dispersion with an average particle size of 4.6 nm and subsequently the best electrocatalytic activity,and so,it was further characterized.Its anodic peak current density for ethanol oxidation from linear sweep voltammetry (LSV) is 7.9 mA·cm^-2,which is 1.4 and 5.2 times as high as those of the catalysts prepared by co-impregnation/NaBH4 and co-impregnation/ HCOOH reduction methods,2.1 times as high as that of the 10 wt.% Pt-WO3/C catalyst prepared by co-impregnation/EG method,respectively.
基金supported by National Key Research and Development Program of China(No.2021YFA1601004).
文摘Direct ethanol fuel cells (DEFCs) have drawn attention for their simplicity, rapid start-up, high power density and environmental friendliness. Despite these advantages, the widespread application of DEFCs faces challenges, primarily due to the inadequate performance of anode and cathode catalysts. Pd-based materials have shown exceptional catalytic activity for both the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR). Alloying noble metals with rare earth elements has emerged as an effective strategy to further enhance the catalytic activity by modulating the electronic structure. In this study, we synthesized a series of palladium-rare earth (Pd3RE) alloys supported on carbon to serve as bifunctional catalysts that efficiently promote both ORR and EOR. Compared to Pd/C, the Pd3Tb/C catalyst exhibits 3.1-fold and 1.8-fold enhancement in activity for ORR and EOR, respectively. The charge transfer in the Pd3Tb/C results in an electron-rich Pd component, thereby weakening the binding energy with oxygen species and facilitating the two reactions.
基金supported by the National Natural Science Foundation of China (21307038 and 21577046)Key Project of Chinese Ministry of Education (212115)Physical Chemistry Experiment of Huanggang Normal University (2015CK12)~~
文摘Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells.