Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transform...Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.展开更多
Metro tunnels play a crucial role in urban transportation.However,with growing tunnel operation periods,defects,and large deformations appearing,these are influencing tunnel structural performance and threatening publ...Metro tunnels play a crucial role in urban transportation.However,with growing tunnel operation periods,defects,and large deformations appearing,these are influencing tunnel structural performance and threatening public safety.Three-dimensional(3D)tunnel reconstruction is an effective way to highlight tunnel conditions and provide a basis for engineering management and maintenance.However,the current methods of tunnel 3D reconstruction do not sufficiently combine the qualitative and quantitative characteristics of tunnel states.In this study,a novel method for metro tunnel 3D reconstruction based on structure from motion(SfM)and direct linear transformation(DLT)is proposed.The dimensionless 3D reconstruction point cloud acquired through the SfM method showcases the qualitative characteristics(such as leakage and pipelines)of the tunnel state.The close-range photogrammetry DLT method provides scale information missing from the SfM method and quantitative characteristics(such as profile deformation)of the tunnel state.The SfM-DLT method was tested in a Shanghai metro tunnel,and proved to be feasible and promising for future tunnel inspections.展开更多
基金Project 2005A030 supported by the Youth Science and Research Foundation from China University of Mining & Technology
文摘Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.
基金supported by the Science and Technology Commission of Shanghai Municipality(Grant No.18DZ1205902)the Key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059)the National Key R&D Program of China(Grant No.2018YFB2101000).
文摘Metro tunnels play a crucial role in urban transportation.However,with growing tunnel operation periods,defects,and large deformations appearing,these are influencing tunnel structural performance and threatening public safety.Three-dimensional(3D)tunnel reconstruction is an effective way to highlight tunnel conditions and provide a basis for engineering management and maintenance.However,the current methods of tunnel 3D reconstruction do not sufficiently combine the qualitative and quantitative characteristics of tunnel states.In this study,a novel method for metro tunnel 3D reconstruction based on structure from motion(SfM)and direct linear transformation(DLT)is proposed.The dimensionless 3D reconstruction point cloud acquired through the SfM method showcases the qualitative characteristics(such as leakage and pipelines)of the tunnel state.The close-range photogrammetry DLT method provides scale information missing from the SfM method and quantitative characteristics(such as profile deformation)of the tunnel state.The SfM-DLT method was tested in a Shanghai metro tunnel,and proved to be feasible and promising for future tunnel inspections.