期刊文献+
共找到2,049篇文章
< 1 2 103 >
每页显示 20 50 100
Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models 被引量:2
1
作者 Yachen Xie Michael Z.Hou +1 位作者 Hejuan Liu Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1262-1279,共18页
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,... Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation. 展开更多
关键词 Rock anisotropy direct shear creep Creep compliance Steady-creep rate Empirical model Creep constitutive model
下载PDF
A novel method for geometric quality assurance of rock joint replicas in direct shear testing-Part 2:Validation and mechanical replicability
2
作者 J.Larsson F.Johansson +3 位作者 D.Mas Ivars E.Johnson M.Flansbjer N.W.Portal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2209-2223,共15页
Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas ... Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies. 展开更多
关键词 Three-dimensional(3D)scanning Contact area measurements direct shear testing Geometric quality assurance Mechanical replicability Replicas Rock joint
下载PDF
Design and verification of portable direct shear tester with application to remolded colluvium geomaterials
3
作者 K.J.Shou Y.W.Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期326-332,共7页
The mechanical properties of colluvium strongly govern the stability of colluvial slopes, and they arc essential for the related analysis and design. Nevertheless, their measurement is not easy on account of heterogen... The mechanical properties of colluvium strongly govern the stability of colluvial slopes, and they arc essential for the related analysis and design. Nevertheless, their measurement is not easy on account of heterogeneity in property and difficulty of sampling. This study attempted to evaluate the shear strength of remolded colluvium by means of a simple direct shear test in the field. A portable direct shear tester was designed to overcome the inconvenience and expensiveness of the conventional large-scale in-situ direct shear test. It can be easily assembled and applied for the silnplc field direct shear test. For calibration, the results of the portable direct shear tester were compared with the results of the laboratory direct shear tester for four different types of soil samples, i.e. standard sand, slate debris, arenaceous shale debris and mixture of gravel and sand. Correlation formulas were established based on the calibration, enabling the portable direct shear tester to measure and estimate the shear strength of remoldcd colluvium in field. This study primarily focuses on the colluvium in Central Taiwan, including the lateritic Dadu Terrace and the arcnaceous shale of Taiping-Wufcng mounts. The portable direct shear tester was applied to sites selected in these areas, and the results were furthcr analyzed and discussed. 展开更多
关键词 direct shear test portable direct shear tester simple field direct shear test colluvial slope
下载PDF
Mesomechanical simulation of direct shear test on outwash deposits with granular discrete element method 被引量:6
4
作者 石崇 王盛年 +2 位作者 刘琳 孟庆祥 张强 《Journal of Central South University》 SCIE EI CAS 2013年第4期1094-1102,共9页
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco... The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies. 展开更多
关键词 outwash deposit direct shear test granular discrete element MESOMECHANICS
下载PDF
Numerical simulation of direct shear tests on mechanical properties of talus deposits based on self-adaptive PCNN digital image processing 被引量:5
5
作者 王盛年 徐卫亚 +1 位作者 石崇 张强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2904-2914,共11页
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal... The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice. 展开更多
关键词 talus deposits digital image processing pulse coupled neural networks(PCNN) direct shear test mechanical property granular discrete element method
下载PDF
Unified analytical stressstrain curve for quasibrittle geomaterial in uniaxial tension, direct shear and uniaxial compression 被引量:5
6
作者 王学滨 《Journal of Central South University of Technology》 EI 2006年第1期99-104,共6页
Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tens... Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tension, direct shear and uniaxial compression were presented, respectively. The three derived stressstrain curves were generalized as a unified formula. Beyond the onset of strain localization, a linear strain-softening constitutive relation for localized band was assigned. The size of the band was controlled by internal or characteristic length according to gradient-dependent plasticity. Elastic strain within the entire specimen was assumed to be uniform and decreased with the increase of plastic strain in localized band. Total strain of the specimen was decomposed into elastic and plastic parts. Plastic strain of the specimen was the average value of plastic strains in localized band over the entire specimen. For different heights, the predicted softening branches of the relative stressstrain curves in uniaxial compression are consistent with the previously experimental results for normal concrete specimens. The present expressions for the post-peak stressdeformation curves in uniaxial tension and direct shear agree with the previously numerical results based on gradient-dependent plasticity. 展开更多
关键词 stress- strain curve uniaxial tension uniaxial compression direct shear shear band ROCK CONCRETE
下载PDF
Numerical analysis of loess and weak intercalated layer failure behavior under direct shearing and cyclic loading 被引量:3
7
作者 ZHANG Ze-lin WANG Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2796-2815,共20页
The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of t... The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China. 展开更多
关键词 LOESS MUDSTONE Weak intercalated layer direct shear test Cyclic shear test PFC2D
下载PDF
Large-scale direct shear testing of geocell reinforced soil 被引量:3
8
作者 汪益敏 陈页开 刘炜 《Journal of Central South University of Technology》 EI 2008年第6期895-900,共6页
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr... The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils. 展开更多
关键词 direct shear test GEOCELL reinforced soil shear strength COHESION
下载PDF
Application of in situ direct shear device to shear strength measurement of rockfill materials 被引量:2
9
作者 Si-hong LIU 《Water Science and Engineering》 EI CAS 2009年第3期48-57,共10页
A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the convention... A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the conventional direct shear box test. The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the sheafing frame. This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa. In this study, the DST was further validated by carrying out tests on samples with the same gradations, rather than on samples with parallel gradations, under normal stresses up to 880 kPa. In addition, the DST was performed inside fills in two applications. 展开更多
关键词 in situ direct shear test shear strength ROCKFILL
下载PDF
Effects of water saturation and loading rate on direct shear tests of andesite 被引量:2
10
作者 Tianshu Bao Kimihiro Hashiba Katsunori Fukui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期653-662,共10页
For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous stud... For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous studies explored the rheological properties of rock in air-dried and water saturated conditions,as well as the water effects on compressive and tensile strengths.In this study,andesite was subjected to direct shear tests under five water saturation conditions,which were controlled by varying the wetting and drying time.The tests were conducted at alternating displacement rates under three vertical stresses.The results reveal that the shear strength decreases exponentially as water saturation increases,and that the increase in shear strength with a tenfold increase in displacement rate is nearly constant for each of the vertical stresses.Based on the findings of the shear tests in this study and the compression and tension tests in previous studies,the influences of both water saturation and loading rate on the Hoek-Brown failure criterion for the andesite was examined.These results indicate that the brittleness index of the andesite,which is defined as the ratio of uniaxial compressive strength to tensile strength,is independent of both water saturation and loading rate and that the influences of the water saturation dependence and the loading rate dependence of the failure criterion can be converted between each other. 展开更多
关键词 direct shear test Water saturation Loading rate dependence Failure criterion
下载PDF
Coupled Eulerian-Lagrangian simulation of a modified direct shearapparatus for the measurement of residual shear strengths 被引量:1
11
作者 Luke Tatnell Ashley P.Dyson Ali Tolooiyan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1113-1123,共11页
The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(M... The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(MRDS)test can be used to measure the residual shear strength of soils in a laboratory setting.However,modelling and simulation generally require advanced numerical methods to accommodate the large shear strains concentrated in the shear plane.In reality,when the standard direct shear(DS)apparatus is used,the MRDS method is prone to two major sources of measurement error:load cap tilting and specimen loss.These sources of error make it difficult or even impossible to correctly determine the residual shear strength.This paper presents a modified DS apparatus and multi-reversal multi-stage test method,simulated using the coupled Eulerian-Lagrangian(CEL)method in a finite element environment.The method was successful in evaluating equipment and preventing both load cap tilting and specimen loss,while modelling large-deformation behaviour that is not readily simulated with the conventional FEM or arbitrary Lagrangian-Eulerian(ALE)analysis.Thereafter,a modified DS apparatus was created for the purpose of analysing mixtures of organic materials found in an Australian clay.The results obtained from the modified DS CEL model in combination with laboratory tests show a great improvement in the measured residual shear strength profiles compared to those from the standard apparatus.The modified DS setup ensures that accurate material residual shear strengths are calculated,a factor that is vital to ensure appropriate soil behaviour is simulated for numerical analyses of large-scale geotechnical projects. 展开更多
关键词 Coupled Eulerian-Lagrangian(CEL)simulation Residual shear strength MULTI-STAGE direct shear(DS) Organic content Cohesive soil
下载PDF
Development of a dynamic load direct shear apparatus for the study of permafrost
12
作者 YingHui Cui JianKun Liu Peng Lv 《Research in Cold and Arid Regions》 CSCD 2013年第4期399-403,共5页
The dynamic parameters of permafrost are crucial to and directly affect the accuracy of engineering design and numerical simulation. This paper describes a new dynamic load direct shear apparatus that was developed to... The dynamic parameters of permafrost are crucial to and directly affect the accuracy of engineering design and numerical simulation. This paper describes a new dynamic load direct shear apparatus that was developed to measure these parameters. The power systems and measurement and control systems of the device are described, as is a successful validation experiment. The results show that this dynamic load direct shearing device can accurately derive dynamic shear parameters within a certain range of frequencies and ampli- tudes of shear load. 展开更多
关键词 PERMAFROST dynamic load direct shear apparatus dynamic parameters
下载PDF
Shear Strength of Unbound Crop By-Products Using the Direct Shear Box Apparatus
13
作者 Morgan Chabannes Frédéric Becquart Nor-Edine Abriak 《Journal of Renewable Materials》 SCIE 2019年第9期855-863,共9页
The return to old building methods by mixing crop by-products with mineral binders is arousing great interest in Europe since about 25 years.The use of these bio-aggregates based materials for the design of building e... The return to old building methods by mixing crop by-products with mineral binders is arousing great interest in Europe since about 25 years.The use of these bio-aggregates based materials for the design of building envelopes is a valuable opportunity to deal with increasingly demanding thermal regulations.In addition,the regulatory framework is moving towards reducing the overall car-bon footprint of new buildings.Some traditional and historic buildings are based on timber framing with earth-straw as infill material for instance.Hemp concrete is a bio-based material that can be manually tamped in timber stud walls or more recently in the form of precast blocks.Owing to their low compressive strength,bio-based concretes using a large volume fraction of plant-derived aggregates are only considered as thermal and sound insulation materials.The structural design practice of wood frame walls does not assume any mechanical contribution of hemp concrete whereas it may contribute to the racking strength of the structure.In this context,more research is needed regarding the shear behavior of crop by-products and bio-based concretes.In this case,the objective of the study was to perform direct shear tests under three levels of normal pressure on hemp shiv and rice husk as unbound crop by-products.The results showed that the friction angle of the granular skeleton based on rice husk for a given relative displacement was significantly lower than that measured on hemp shiv.This is in accordance with what had been observed on bio-based concretes cast by mixing aggregates with lime and shear strength parameters measured by means of triaxial compression. 展开更多
关键词 Plant-derived aggregates direct shear test racking strength friction angle bio-based concretes
下载PDF
Investigation on Fracture Behavior of FRP-Concrete Interface under Direct Shear
14
作者 Fengchen An Shuangyin Cao Jinlong Pan Qian Ge 《Journal of Civil Engineering and Architecture》 2010年第3期20-25,共6页
In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearin... In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP. 展开更多
关键词 FRP-concrete interface direct shear fracture behaviour friction stress concrete substrate
下载PDF
Mathematical Modeling of Shear Stress and Direct Shear Test for Compressible Soil: Case of Soil Bordering the Wouri River
15
作者 Michael Soup Teoua Ouagni François Ngapgue +2 位作者 Fabien Kenmogne Alain Soup Tewa Kammogne Simon Ngoh Koumi 《World Journal of Engineering and Technology》 2021年第3期385-406,共22页
This paper focuses on the development of the mathematical model of shear stress by direct shear test for compressible soil of the littoral region, which will be a great tool in the hand of geotechnical engineers. The ... This paper focuses on the development of the mathematical model of shear stress by direct shear test for compressible soil of the littoral region, which will be a great tool in the hand of geotechnical engineers. The most common use of a shear test is to determine the shear strength which is the maximum shear stress that a material can withstand before the failure occurs. This parameter is useful in many engineering designs such as foundations, roads and retaining walls. We carried out an experimental laboratory test of ten samples of undisturbed soil taken at different points of the border of Wouri river of Cameroon. The samples were collected at different depths and a direct shear test was conducted. The investigations have been performed under constant vertical stresses and constant sample volume with the aim to determine the frictional angle and the cohesion of the compressible soil which are so important to establish the conditions of buildings stability. Special care was taken to derive loading conditions actually existing in the ground and to duplicate them in the laboratory. Given that the buildings constructed in this area are subjected to settlement, landslide, and punch break or shear failure, the cohesion and the frictional angle are determined through the rupture line after assessed the mean values of the shear stress for the considered ten samples. The bearing capacity of the soil, which is the fundamental soil parameter, was calculated. From the laboratory experimental results, the least squared method was used to derive an approximated mathematical model of the shearing stress. Many optimizations methods were then considered to reach the best adjustment. 展开更多
关键词 direct shear Test Normal and Critical Stresses Frictional Angle Bearing Capacity Mathematical Model
下载PDF
ANALYSIS OF SIZE EFFECT,SHEAR DEFORMATION AND DILATION IN DIRECT SHEAR TEST BASED ON GRADIENT- DEPENDENT PLASTICITY 被引量:11
16
作者 WangXuebin TangJupeng ZhangZhihui PanYishan 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第7期1095-1099,共5页
The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single s... The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single shear band,and based on gradient-dependent plasticity,an analytical solution on size effect or snap-back is obtained. The results show that the post peak response becomes steeper and even exhibits snap-back with increasing of length. For small specimen,the relative shear displacement when specimen failure occurs is lower than that of larger specimen and the shear stress-relative displacement curve becomes steeper. The theoretical solution on non-uniformity of strains in shear band is obtained and evolution of the relative shear displacement is represented. By resorting to the linear relation between local plastic shear strain and local plastic volumetric strain,the dilation and compaction within shear band are analyzed. Relation between apparent shear strain and apparent normal strain and relation between shear displacement and vertical displacement are established. 展开更多
关键词 应变梯度塑性理论 剪切试验 剪切变形 尺寸效应
下载PDF
Presentation of Empirical Equations for Estimating Internal Friction Angle of GW and GC Soils in Mashhad, Iran Using Standard Penetration and Direct Shear Tests and Comparison with Previous Equations 被引量:1
17
作者 Pouya Salari Gholam Reza Lashkaripour Mohammad Ghafoori 《Open Journal of Geology》 2015年第5期231-238,共8页
Presentation of empirical equations for estimating engineering properties of soils is a simple, low cost and widely-used method. One of the major concerns in using these equations is evaluating their accuracy in diffe... Presentation of empirical equations for estimating engineering properties of soils is a simple, low cost and widely-used method. One of the major concerns in using these equations is evaluating their accuracy in different conditions and regions which often lead to doubts about obtained results. Most of these equations were derived in special laboratories, different climate conditions and in soils with different geotechnical and geological engineering properties and were generalized to other conditions. The main question is that whether these methods are also applicable to other conditions. Using local equations and narrowing the usage range of various methods based on each region’s properties are appropriate methods to solve these problems. This leads to simplified and faster analysis and high reliability in the obtained results. In this paper, empirical equations were derived to estimate internal friction angle, based on SPT numbers of Mashhad City’s soils in Iran, using SPT and direct shear tests results from 50 samples (25 GW and 25 GC soil samples). The results showed similar values for predicted?φ?values by SPT test and?φ?values determined by direct shear tests. 展开更多
关键词 Internal Friction Angle GW and GC Soil direct shear TEST SPT TEST
下载PDF
Direct shear tests of coarse-grained fillings from high-speed railway subgrade in cold regions
18
作者 Qing Zhi Wang Jian Kun Liu +1 位作者 Jian Hong Fang An Hua Xu 《Research in Cold and Arid Regions》 CSCD 2017年第3期236-242,共7页
In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,wa... In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,water contents and temperatures.The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures,in both unfrozen and frozen states.This phenomenon was mainly due to the shear dilatation deformation effect.The shear displacement-shear stress curves show similar stages.Besides,the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state.In both the unfrozen or frozen states at the same water contents,the shear strength increased with increasing normal pressure. 展开更多
关键词 COARSE-GRAINED fillings large SCALE direct test shear displacement-shear stress CURVE shear STRENGTH
下载PDF
Study on Shear Strength Characteristics of Basalt-Concrete Bonding Interface Based on in-situ Direct Shear Test
19
作者 Peng Xia Xinli Hu +5 位作者 Chunye Ying Shuangshuang Wu Chu Xu Xuan Wang Hao Chen Hang Duan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期553-567,共15页
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets... In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%. 展开更多
关键词 direct shear test basalt-concrete bonding interface shear strength parameters engineering geogolgy
原文传递
Study on Shear Strength Characteristics of Columnar Jointed Basalt Based on in-situ Direct Shear Test at Baihetan Hydropower Station 被引量:2
20
作者 Peng Xia Xinli Hu +4 位作者 Shuangshuang Wu Chunye Ying Chu Xu Xuan Wang Hao Chen 《Journal of Earth Science》 SCIE CAS CSCD 2023年第4期1280-1294,共15页
Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties o... Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties of rock mass,and the mechanical properties of CJB are of great significance to the Baihetan Hydropower Project.Therefore,in-situ direct shear tests were carried out on ten test adit at different locations in the dam site area to study the shear behavior of CJB.In this study,21 sets of in-situ direct shear tests were conducted for rock types of type Ⅱ_(2),type Ⅲ_(1)and type Ⅲ_(2),with horizontal and vertical shear planes and two different specimen sizes of CJB.Shear strength parameters of CJB were obtained by linear fitting of in-situ direct shear test results based on the Mohr-Coulomb strength criterion.The results indicate that the shear strength parameters of CJB with horizontal shear plane increase as the increase of rock type grade.The shear strength parameters of CJB show obvious anisotropy and the friction coefficient of the horizontal shear plane is greater than the vertical shear plane.The friction coefficient in the horizontal direction of the shear plane is 1.27 times that in the vertical direction of the shear plane.With the increase of rock type grade,the difference of friction coefficient becomes larger.However,the cohesion changes little whether the shear plane is horizontal or vertical.In addition,the size effect of CJB in this area is significant.The shear strength parameters of large size(100 cm × 100 cm) specimens are lower than those of regular size(50 cm × 50 cm) specimens.The reduction of cohesion is greater than that of the friction coefficient.For rock type Ⅲ_(2),the cohesion of large-size specimens is 0.637 of the regular-size specimens.The reduction percentage of the friction coefficient for type Ⅲ_(2)is 1.66 times that of type Ⅲ_(1).The reduction percentage of the cohesion for type Ⅲ_(2)is 1.27 times that of type Ⅲ_(1).The size effect decreases with the increase of rock type grade.The research results of this study can provide an important basis for the selection of rock mechanics parameters in the dam site area of Baihetan Hydropower Station and the stability analysis of the dam foundation and rocky slopes. 展开更多
关键词 direct shear test columnar jointed basalt shear strength parameters in-situ processing.
原文传递
上一页 1 2 103 下一页 到第
使用帮助 返回顶部