Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability ...With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability for power flow calculations to support unit dispatch.Based on the analysis of a variety of parallelization methods, this paper deploys the large-scale power flow calculation task on a cloud computing platform using resilient distributed datasets(RDDs).It optimizes a directed acyclic graph that is stored in the RDDs to solve the low performance problem of the MapReduce model.This paper constructs and simulates a power flow calculation on a large-scale power system based on standard IEEE test data.Experiments are conducted on Spark cluster which is deployed as a cloud computing platform.They show that the advantages of this method are not obvious at small scale, but the performance is superior to the stand-alone model and the MapReduce model for large-scale calculations.In addition, running time will be reduced when adding cluster nodes.Although not tested under practical conditions, this paper provides a new way of thinking about parallel power flow calculations in large-scale power systems.展开更多
Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyc...Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyclic graph support vector machine(DAGSVM) method is proposed to predict the Hamming weight of the key. The method needs to generate K(K ? 1)/2 binary support vector machine(SVM) classifiers and realizes the K-class prediction using a rooted binary directed acyclic graph(DAG) testing model. Further, particle swarm optimization(PSO) is used for optimal selection of DAGSVM model parameters to improve the performance of DAGSVM. By exploiting the electromagnetic emanations captured while a chip was implementing the RC4 algorithm in software, the computation complexity and performance of several multi-class machine learning methods, such as DAGSVM, one-versus-one(OVO)SVM, one-versus-all(OVA)SVM, Probabilistic neural networks(PNN), K-means clustering and fuzzy neural network(FNN) are investigated. In the same scenario, the highest classification accuracy of Hamming weight for the key reached 100%, 95.33%, 85%, 74%, 49.67% and 38% for DAGSVM, OVOSVM, OVASVM, PNN, K-means and FNN, respectively. The experiment results demonstrate the proposed model performs higher predictive accuracy and faster convergence speed.展开更多
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金supported by National Natural Science Foundation of China (No.51677072)
文摘With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability for power flow calculations to support unit dispatch.Based on the analysis of a variety of parallelization methods, this paper deploys the large-scale power flow calculation task on a cloud computing platform using resilient distributed datasets(RDDs).It optimizes a directed acyclic graph that is stored in the RDDs to solve the low performance problem of the MapReduce model.This paper constructs and simulates a power flow calculation on a large-scale power system based on standard IEEE test data.Experiments are conducted on Spark cluster which is deployed as a cloud computing platform.They show that the advantages of this method are not obvious at small scale, but the performance is superior to the stand-alone model and the MapReduce model for large-scale calculations.In addition, running time will be reduced when adding cluster nodes.Although not tested under practical conditions, this paper provides a new way of thinking about parallel power flow calculations in large-scale power systems.
基金supported by the National Natural Science Foundation of China(61571063,61202399,61171051)
文摘Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyclic graph support vector machine(DAGSVM) method is proposed to predict the Hamming weight of the key. The method needs to generate K(K ? 1)/2 binary support vector machine(SVM) classifiers and realizes the K-class prediction using a rooted binary directed acyclic graph(DAG) testing model. Further, particle swarm optimization(PSO) is used for optimal selection of DAGSVM model parameters to improve the performance of DAGSVM. By exploiting the electromagnetic emanations captured while a chip was implementing the RC4 algorithm in software, the computation complexity and performance of several multi-class machine learning methods, such as DAGSVM, one-versus-one(OVO)SVM, one-versus-all(OVA)SVM, Probabilistic neural networks(PNN), K-means clustering and fuzzy neural network(FNN) are investigated. In the same scenario, the highest classification accuracy of Hamming weight for the key reached 100%, 95.33%, 85%, 74%, 49.67% and 38% for DAGSVM, OVOSVM, OVASVM, PNN, K-means and FNN, respectively. The experiment results demonstrate the proposed model performs higher predictive accuracy and faster convergence speed.