Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ...The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.展开更多
In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structu...In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structure of the directed acyclic graph is not chosen random and fixed, and it can be adaptive to be optimal according to the incoming testing samples, thus it has a good generalization performance. From experiments on six datasets, we can see that the proposed improved version of DAGSVM is better than the traditional one with respect to the accuracy rate.展开更多
This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential d...This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential dynamical systems(SDS)on graphs.Some properties on WDS,especially some results on NOR-WDS,which are different from that on NOR-SDS,are obtained.展开更多
With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability ...With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability for power flow calculations to support unit dispatch.Based on the analysis of a variety of parallelization methods, this paper deploys the large-scale power flow calculation task on a cloud computing platform using resilient distributed datasets(RDDs).It optimizes a directed acyclic graph that is stored in the RDDs to solve the low performance problem of the MapReduce model.This paper constructs and simulates a power flow calculation on a large-scale power system based on standard IEEE test data.Experiments are conducted on Spark cluster which is deployed as a cloud computing platform.They show that the advantages of this method are not obvious at small scale, but the performance is superior to the stand-alone model and the MapReduce model for large-scale calculations.In addition, running time will be reduced when adding cluster nodes.Although not tested under practical conditions, this paper provides a new way of thinking about parallel power flow calculations in large-scale power systems.展开更多
Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyc...Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyclic graph support vector machine(DAGSVM) method is proposed to predict the Hamming weight of the key. The method needs to generate K(K ? 1)/2 binary support vector machine(SVM) classifiers and realizes the K-class prediction using a rooted binary directed acyclic graph(DAG) testing model. Further, particle swarm optimization(PSO) is used for optimal selection of DAGSVM model parameters to improve the performance of DAGSVM. By exploiting the electromagnetic emanations captured while a chip was implementing the RC4 algorithm in software, the computation complexity and performance of several multi-class machine learning methods, such as DAGSVM, one-versus-one(OVO)SVM, one-versus-all(OVA)SVM, Probabilistic neural networks(PNN), K-means clustering and fuzzy neural network(FNN) are investigated. In the same scenario, the highest classification accuracy of Hamming weight for the key reached 100%, 95.33%, 85%, 74%, 49.67% and 38% for DAGSVM, OVOSVM, OVASVM, PNN, K-means and FNN, respectively. The experiment results demonstrate the proposed model performs higher predictive accuracy and faster convergence speed.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
文摘The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks.
文摘In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structure of the directed acyclic graph is not chosen random and fixed, and it can be adaptive to be optimal according to the incoming testing samples, thus it has a good generalization performance. From experiments on six datasets, we can see that the proposed improved version of DAGSVM is better than the traditional one with respect to the accuracy rate.
文摘This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential dynamical systems(SDS)on graphs.Some properties on WDS,especially some results on NOR-WDS,which are different from that on NOR-SDS,are obtained.
基金supported by National Natural Science Foundation of China (No.51677072)
文摘With the integration of distributed generation and the construction of cross-regional long-distance power grids, power systems become larger and more complex.They require faster computing speed and better scalability for power flow calculations to support unit dispatch.Based on the analysis of a variety of parallelization methods, this paper deploys the large-scale power flow calculation task on a cloud computing platform using resilient distributed datasets(RDDs).It optimizes a directed acyclic graph that is stored in the RDDs to solve the low performance problem of the MapReduce model.This paper constructs and simulates a power flow calculation on a large-scale power system based on standard IEEE test data.Experiments are conducted on Spark cluster which is deployed as a cloud computing platform.They show that the advantages of this method are not obvious at small scale, but the performance is superior to the stand-alone model and the MapReduce model for large-scale calculations.In addition, running time will be reduced when adding cluster nodes.Although not tested under practical conditions, this paper provides a new way of thinking about parallel power flow calculations in large-scale power systems.
基金supported by the National Natural Science Foundation of China(61571063,61202399,61171051)
文摘Machine learning has a powerful potential for performing the template attack(TA) of cryptographic device. To improve the accuracy and time consuming of electromagnetic template attack(ETA), a multi-class directed acyclic graph support vector machine(DAGSVM) method is proposed to predict the Hamming weight of the key. The method needs to generate K(K ? 1)/2 binary support vector machine(SVM) classifiers and realizes the K-class prediction using a rooted binary directed acyclic graph(DAG) testing model. Further, particle swarm optimization(PSO) is used for optimal selection of DAGSVM model parameters to improve the performance of DAGSVM. By exploiting the electromagnetic emanations captured while a chip was implementing the RC4 algorithm in software, the computation complexity and performance of several multi-class machine learning methods, such as DAGSVM, one-versus-one(OVO)SVM, one-versus-all(OVA)SVM, Probabilistic neural networks(PNN), K-means clustering and fuzzy neural network(FNN) are investigated. In the same scenario, the highest classification accuracy of Hamming weight for the key reached 100%, 95.33%, 85%, 74%, 49.67% and 38% for DAGSVM, OVOSVM, OVASVM, PNN, K-means and FNN, respectively. The experiment results demonstrate the proposed model performs higher predictive accuracy and faster convergence speed.