It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has...It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.展开更多
We proposed a novel solution schema called the Hierarchical Labeling Schema (HLS) to answer reachability queries in directed graphs. Different from many existing approaches that focus on static directed acyclic grap...We proposed a novel solution schema called the Hierarchical Labeling Schema (HLS) to answer reachability queries in directed graphs. Different from many existing approaches that focus on static directed acyclic graphs (DAGs), our schema focuses on directed cyclic graphs (DCGs) where vertices or arcs could be added to a graph incrementally. Unlike many of the traditional approaches, HLS does not require the graph to be acyclic in constructing its index. Therefore, it could, in fact, be applied to both DAGs and DCGs. When vertices or arcs are added to a graph, the HLS is capable of updating the index incrementally instead of re-computing the index from the scratch each time, making it more efficient than many other approaches in the practice. The basic idea of HLS is to create a tree for each vertex in a graph and link the trees together so that whenever two vertices are given, we can immediately know whether there is a path between them by referring to the appropriate trees. We conducted extensive experiments on both real-world datasets and synthesized datasets. We compared the performance of HLS, in terms of index construction time, query processing time and space consumption, with two state-of-the-art methodologies, the path-tree method and the 3-hop method. We also conducted simulations to model the situation when a graph is updated incrementally. The performance comparison of different algorithms against HLS on static graphs has also been studied. Our results show that HLS is highly competitive in the practice and is particularly useful in the cases where the graphs are updated frequently.展开更多
基金supported by the National Natural Science Foundation of China under Grant 71671103
文摘It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.
文摘We proposed a novel solution schema called the Hierarchical Labeling Schema (HLS) to answer reachability queries in directed graphs. Different from many existing approaches that focus on static directed acyclic graphs (DAGs), our schema focuses on directed cyclic graphs (DCGs) where vertices or arcs could be added to a graph incrementally. Unlike many of the traditional approaches, HLS does not require the graph to be acyclic in constructing its index. Therefore, it could, in fact, be applied to both DAGs and DCGs. When vertices or arcs are added to a graph, the HLS is capable of updating the index incrementally instead of re-computing the index from the scratch each time, making it more efficient than many other approaches in the practice. The basic idea of HLS is to create a tree for each vertex in a graph and link the trees together so that whenever two vertices are given, we can immediately know whether there is a path between them by referring to the appropriate trees. We conducted extensive experiments on both real-world datasets and synthesized datasets. We compared the performance of HLS, in terms of index construction time, query processing time and space consumption, with two state-of-the-art methodologies, the path-tree method and the 3-hop method. We also conducted simulations to model the situation when a graph is updated incrementally. The performance comparison of different algorithms against HLS on static graphs has also been studied. Our results show that HLS is highly competitive in the practice and is particularly useful in the cases where the graphs are updated frequently.