Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数...传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数。然后,对噪声方差和信号功率进行二次估计,进而使用离网求根稀疏贝叶斯学习(off-grid root sparse Bayesian learning,OGRSBL)技术来实现入射角的精确估计。仿真表明,相比传统稀疏贝叶斯学习类算法,所提算法计算效率高,同时对紧邻信号有着更好的估计能力。展开更多
稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离...稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离迭代思想的松弛子空间追踪算法。首先求出回波信号与归一化后字典矩阵相关性最强的多个原子作为初步估计值,再利用初步估计的角度构建代价函数,反复估计直至代价函数收敛。仿真结果表明,所提算法减小了目标个数和相位差的影响,提高了多目标DOA估计的测角精度,同时相较于传统的松弛算法减少了运算量。展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研...相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信...针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。展开更多
文章针对阵元位置误差导致水听器阵列性能恶化的问题,提出一种适用于均匀线阵列的阵元位置无源校准方法。该方法综合远场阵列模型和宽带信号空间谱的特性,利用压缩感知技术,将阵元实际位置估计问题转化为稀疏信号的重建,建立了阵元位置...文章针对阵元位置误差导致水听器阵列性能恶化的问题,提出一种适用于均匀线阵列的阵元位置无源校准方法。该方法综合远场阵列模型和宽带信号空间谱的特性,利用压缩感知技术,将阵元实际位置估计问题转化为稀疏信号的重建,建立了阵元位置误差模型,构建了相应的优化函数,并采用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法解算阵元实际位置。计算机仿真验证表明,基于压缩感知的方法能有效改善阵元位置误差造成的空间谱估计失效问题,可为目标方位角(Direction of Arrival,DOA)估计提供有效的技术支撑。展开更多
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc...With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.展开更多
实时定位移动设备在电子对抗系统中至关重要,其性能主要取决于波达角(direction of arrival,DOA)的估计速度。低快拍是快速DOA估计的先决条件。目前基于稀疏重构算法的DOA估计具有适应低快拍的优势,但估计精度受限于初始观测矩阵,且估...实时定位移动设备在电子对抗系统中至关重要,其性能主要取决于波达角(direction of arrival,DOA)的估计速度。低快拍是快速DOA估计的先决条件。目前基于稀疏重构算法的DOA估计具有适应低快拍的优势,但估计精度受限于初始观测矩阵,且估计速度受限于观测矩阵高维度的多次迭代。为此,提出一种空间差分矩阵和稀疏重构耦合的低快拍下高精度快速估计算法。首先利用空间差分矩阵消除非相干信号和噪声对相干信号估计结果的影响,提升初始观测矩阵的准确度;然后对完备字典做前后空间平滑处理,克服高维度信号处理复杂难题,实现快速估计;最后分别估计非相干信号和相干信号。仿真验证结果表明,相比稀疏重构方法,所提方案初值敏感度显著降低,在保障精度相当甚至小幅度提升的前提下,运行时间复杂度降低50%以上。展开更多
文中提出一种二维空间相干信号波达方向(Direction of Arrival,DOA)估计方法。该方法首先对L形阵接收数据协方差矩阵进行共轭重构,将原协方差矩阵的平方与重构矩阵的平方相加后求均值,得到新协方差矩阵。然后采用前后向空间平滑技术对...文中提出一种二维空间相干信号波达方向(Direction of Arrival,DOA)估计方法。该方法首先对L形阵接收数据协方差矩阵进行共轭重构,将原协方差矩阵的平方与重构矩阵的平方相加后求均值,得到新协方差矩阵。然后采用前后向空间平滑技术对新协方差矩阵进行预处理,最后通过Root-MUSIC算法进行DOA估计。仿真实验和湖试数据分析结果表明,与常规方法相比,文中方法避免了谱峰搜索,减小了计算量,提高了相干信号DOA估计的分辨成功概率和估计精度,具有较高的工程应用价值。展开更多
针对最小冗余线阵难以用于阵列设计的问题,设计了一种性能相近的最优冗余线阵,为实现相应阵列的欠定信号到达角(direction of arrival,DOA)估计,又提出了一种基于两次重构的快速协方差向量稀疏表示方法。该方法利用凸优化中最优解条件,...针对最小冗余线阵难以用于阵列设计的问题,设计了一种性能相近的最优冗余线阵,为实现相应阵列的欠定信号到达角(direction of arrival,DOA)估计,又提出了一种基于两次重构的快速协方差向量稀疏表示方法。该方法利用凸优化中最优解条件,实现了Toeplitz协方差矩阵的快速高精度重构,进而基于构造的协方差向量稀疏表示模型,实现了欠定信号DOA估计。仿真结果证明,最优冗余线阵相较于其他稀疏线阵,耦合影响更低,测向精度更高,所提算法较同类算法DOA估计精度更高。展开更多
针对多重信号分类(multiple signal classification, MUSIC)算法在低阵元数目、低信噪比和小节拍数等非理想条件下,对入射间隔较小的信号波达方向(direction of arrival,DOA)估计有效性的问题,提出了改进的基于酉重构子空间的MUSIC算法...针对多重信号分类(multiple signal classification, MUSIC)算法在低阵元数目、低信噪比和小节拍数等非理想条件下,对入射间隔较小的信号波达方向(direction of arrival,DOA)估计有效性的问题,提出了改进的基于酉重构子空间的MUSIC算法。该算法首先利用酉变换将均匀线阵接收数据实数化,然后根据子空间特征向量的大小,重新构造子空间和校正矩阵得到新的空间谱函数,最后与信号子空间投影算法联合,实现DOA估计。仿真结果表明,与传统MUSIC算法和SSP算法相比,所提算法在低阵元数目、低信噪比和小节拍条件下具有更好的分辨率。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
文摘稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离迭代思想的松弛子空间追踪算法。首先求出回波信号与归一化后字典矩阵相关性最强的多个原子作为初步估计值,再利用初步估计的角度构建代价函数,反复估计直至代价函数收敛。仿真结果表明,所提算法减小了目标个数和相位差的影响,提高了多目标DOA估计的测角精度,同时相较于传统的松弛算法减少了运算量。
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
文摘稀疏阵列布阵灵活,增大阵列孔径的同时还能减少阵元间耦合,但基于稀疏阵列的传统波达方向估计会导致角度模糊混叠,带来估计精度差和稳健性不足的问题。针对以上问题,提出一种适用于稀疏阵列波达方向估计的加权截断奇异值投影(weighted truncated singular value projection,WT-SVP)的鲁棒矩阵填充算法。在填充迭代过程中根据奇异值的大小分配权重,突出大奇异值包含的阵列信息,减少小奇异值中不必要的噪声信息,从而优化传统奇异值投影算法。该算法可以实现稀疏阵列的孔洞信息恢复,对不连续阵元充分利用,同时WT-SVP填充算法实现了稀疏阵列波达方向估计的高精度、高分辨以及在低信噪比、低快拍时的高鲁棒性。
文摘相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
文摘针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。
文摘文章针对阵元位置误差导致水听器阵列性能恶化的问题,提出一种适用于均匀线阵列的阵元位置无源校准方法。该方法综合远场阵列模型和宽带信号空间谱的特性,利用压缩感知技术,将阵元实际位置估计问题转化为稀疏信号的重建,建立了阵元位置误差模型,构建了相应的优化函数,并采用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法解算阵元实际位置。计算机仿真验证表明,基于压缩感知的方法能有效改善阵元位置误差造成的空间谱估计失效问题,可为目标方位角(Direction of Arrival,DOA)估计提供有效的技术支撑。
基金supported by the National Basic Research Program of China。
文摘With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.
文摘实时定位移动设备在电子对抗系统中至关重要,其性能主要取决于波达角(direction of arrival,DOA)的估计速度。低快拍是快速DOA估计的先决条件。目前基于稀疏重构算法的DOA估计具有适应低快拍的优势,但估计精度受限于初始观测矩阵,且估计速度受限于观测矩阵高维度的多次迭代。为此,提出一种空间差分矩阵和稀疏重构耦合的低快拍下高精度快速估计算法。首先利用空间差分矩阵消除非相干信号和噪声对相干信号估计结果的影响,提升初始观测矩阵的准确度;然后对完备字典做前后空间平滑处理,克服高维度信号处理复杂难题,实现快速估计;最后分别估计非相干信号和相干信号。仿真验证结果表明,相比稀疏重构方法,所提方案初值敏感度显著降低,在保障精度相当甚至小幅度提升的前提下,运行时间复杂度降低50%以上。
文摘文中提出一种二维空间相干信号波达方向(Direction of Arrival,DOA)估计方法。该方法首先对L形阵接收数据协方差矩阵进行共轭重构,将原协方差矩阵的平方与重构矩阵的平方相加后求均值,得到新协方差矩阵。然后采用前后向空间平滑技术对新协方差矩阵进行预处理,最后通过Root-MUSIC算法进行DOA估计。仿真实验和湖试数据分析结果表明,与常规方法相比,文中方法避免了谱峰搜索,减小了计算量,提高了相干信号DOA估计的分辨成功概率和估计精度,具有较高的工程应用价值。
文摘针对最小冗余线阵难以用于阵列设计的问题,设计了一种性能相近的最优冗余线阵,为实现相应阵列的欠定信号到达角(direction of arrival,DOA)估计,又提出了一种基于两次重构的快速协方差向量稀疏表示方法。该方法利用凸优化中最优解条件,实现了Toeplitz协方差矩阵的快速高精度重构,进而基于构造的协方差向量稀疏表示模型,实现了欠定信号DOA估计。仿真结果证明,最优冗余线阵相较于其他稀疏线阵,耦合影响更低,测向精度更高,所提算法较同类算法DOA估计精度更高。
文摘针对多重信号分类(multiple signal classification, MUSIC)算法在低阵元数目、低信噪比和小节拍数等非理想条件下,对入射间隔较小的信号波达方向(direction of arrival,DOA)估计有效性的问题,提出了改进的基于酉重构子空间的MUSIC算法。该算法首先利用酉变换将均匀线阵接收数据实数化,然后根据子空间特征向量的大小,重新构造子空间和校正矩阵得到新的空间谱函数,最后与信号子空间投影算法联合,实现DOA估计。仿真结果表明,与传统MUSIC算法和SSP算法相比,所提算法在低阵元数目、低信噪比和小节拍条件下具有更好的分辨率。