期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS 被引量:2
1
作者 陈化 陈洪葛 +1 位作者 段忆芮 胡鑫 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1653-1664,共12页
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande... Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω. 展开更多
关键词 dirichlet eigenvalues finitely degenerate elliptic operators HSrmander's con-dition sub-elliptic estimate Grushin type operator
下载PDF
Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators 被引量:2
2
作者 CHEN Hua QIAO RongHua +1 位作者 LUO Peng XIAO DongYuan 《Science China Mathematics》 SCIE 2014年第11期2235-2246,共12页
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2... Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2. 展开更多
关键词 cone Laplacian cone Sobolev spaces dirichlet eigenvalues upper bounds of eigenvalues lower bounds of eigenvalues
原文传递
A Probabilistic Approach to the First Dirichlet Eigenvalue on Non-compact Riemannian Manifold
3
作者 Wang Fengyu (Department of Mathematics,Beijing Normal University,Beijing 100875,China) 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1997年第1期116-126,共11页
By using diffusion process with absorbing boundary,some lower bounds are obtained for the first Dirichlet eigenvalue of operator Δ+▽h on a non-compact complete Riemannian manifold. The resulting estimates contain Mc... By using diffusion process with absorbing boundary,some lower bounds are obtained for the first Dirichlet eigenvalue of operator Δ+▽h on a non-compact complete Riemannian manifold. The resulting estimates contain McKean’s estimate for ▽h=0.Moreover,the first Dirichlet eigen- value for elliptic operators on R^d and the first mixed eigenvalue are also studied.Some examples show that our estimates can be sharp even for ▽h≠0. 展开更多
关键词 dirichlet eigenvalue Diffusion process Mixed eigenvalue
原文传递
Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums
4
作者 Hua Chen Jinning Li 《Analysis in Theory and Applications》 CSCD 2020年第3期243-261,共19页
LetΩ,with finite Lebesgue measure|Ω|,be a non-empty open subset of R,andΩ=∪∞j-1Ωj,where the open setsΩj are pairwise disjoint and the boundaryГ=■Ωhas Minkowski dimension D∈(0,1).In this paper we study the D... LetΩ,with finite Lebesgue measure|Ω|,be a non-empty open subset of R,andΩ=∪∞j-1Ωj,where the open setsΩj are pairwise disjoint and the boundaryГ=■Ωhas Minkowski dimension D∈(0,1).In this paper we study the Dirichlet eigenvalues problem on the domainΩand give the exact second asymptotic term for the eigenvalues,which is related to the Minkowski dimension D.Meanwhile,we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains. 展开更多
关键词 One-dimensional fractal drum dirichlet eigenvalues Polya conjecture Minkowski dimension.
原文传递
Large m asymptotics for minimal partitions of the Dirichlet eigenvalue
5
作者 Zhiyuan Geng Fanghua Lin 《Science China Mathematics》 SCIE CSCD 2022年第1期1-8,共8页
In this paper,we study large m asymptotics of the l 1 minimal m-partition problem for the Dirichlet eigenvalue.For any smooth domainΩ⊂R^(n)such that|Ω|=1,we prove that the limit lim_(m→∞)l^(1)_(m)(Ω)=c 0 exists,a... In this paper,we study large m asymptotics of the l 1 minimal m-partition problem for the Dirichlet eigenvalue.For any smooth domainΩ⊂R^(n)such that|Ω|=1,we prove that the limit lim_(m→∞)l^(1)_(m)(Ω)=c 0 exists,and the constant c 0 is independent of the shape ofΩ.Here,l^(1)_(m)(Ω)denotes the minimal value of the normalized sum of the first Laplacian eigenvalues for any m-partition ofΩ. 展开更多
关键词 dirichlet eigenvalue l1 minimal partition problem large m asymptotics
原文传递
Dirichlet Eigenvalue Ratios for the p-sub-Laplacian in the Carnot Group
6
作者 WEI Na NIU Pengcheng LIU Haifeng 《Journal of Partial Differential Equations》 2009年第1期1-10,共10页
We prove some new Hardy type inequalities on the bounded domain with smooth boundary in the Carnot group. Several estimates of the first and second Dirich- let eigenvalues for the p-sub-Laplacian are established.
关键词 Carnot group p-sub-Laplacian dirichlet eigenvalue Hardy-type inequality.
原文传递
Dirichlet Eigenvalue Problem of Degenerate Elliptic Operators with Non-Smooth Coefficients
7
作者 Hua Chen Hong-Ge Chen Jin-Ning Li 《Communications in Mathematical Research》 CSCD 2022年第4期498-515,共18页
The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upp... The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upper bound for its Dirichlet eigenvalues. 展开更多
关键词 dirichlet eigenvalues weighted Sobolev spaces degenerate elliptic operators homogeneous dimension
原文传递
THE EIGENVALUE PROBLEM FOR THE LAPLACIAN EQUATIONS 被引量:3
8
作者 邵志强 洪家兴 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期329-337,共9页
This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barr... This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al. 展开更多
关键词 dirichlet eigenvalue problem gradient estimate maximum principle barrier function
下载PDF
The Uncertainty Principle in Terms of Isoperimetric Inequalities
9
作者 Thomas Schürmann 《Applied Mathematics》 2017年第3期307-311,共5页
Simultaneous measurements of position and momentum are considered in n dimensions. We find, that for a particle whose position is strictly localized in a compact domain (spatial uncertainty) with non-empty boundary, t... Simultaneous measurements of position and momentum are considered in n dimensions. We find, that for a particle whose position is strictly localized in a compact domain (spatial uncertainty) with non-empty boundary, the standard deviation of its momentum is sharply bounded by , while is the first Dirichlet eigenvalue of the Laplacian on D. 展开更多
关键词 Uncertainty Principle dirichlet eigenvalue Wirtinger Inequality
下载PDF
New point view of spectral gap in functional spaces for birth-death processes
10
作者 Yutao MA Yonghua MAO 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第3期523-535,共13页
Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-.L)^-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Fr... Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-.L)^-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Front. Math. China, 2010, 5(3): 379-515], for transient birth-death processes. 展开更多
关键词 Birth-death processes dirichlet first eigenvalue variational formula spectral theory DUALITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部