In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theo...In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.展开更多
This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to t...This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to the linear part is done. The exact expression of the function is given, moreover the range of parameter for which it has constant sign is obtained. Using this, some existence results for the nonlinear problem are deduced from monotone iterative techniques, the classical Krasnoselski fixed point theorem or by application of recent fixed point theorems that combine both theories.展开更多
Using invariant sets of descending flow and variational methods, we establish some sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions for second-order nonlinea...Using invariant sets of descending flow and variational methods, we establish some sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions for second-order nonlinear difference equations with Dirichlet boundary value problem. Some results in the literature are improved.展开更多
Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz...Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.展开更多
In this article, we are concerned with the Dirichlet problem of the stationary von Neumann-Landau wave equation:{(-△x+△y)φ(x,y)=0,x,y∈Ωφ|δΩxδΩ=fwhere Ω is a bounded domain in R^n. By introducing anti...In this article, we are concerned with the Dirichlet problem of the stationary von Neumann-Landau wave equation:{(-△x+△y)φ(x,y)=0,x,y∈Ωφ|δΩxδΩ=fwhere Ω is a bounded domain in R^n. By introducing anti-inner product spaces, we show the existence and uniqueness of the generalized solution for the above Dirichlet problem by functional-analytic methods.展开更多
Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubatio...Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.展开更多
In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 bou...In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.展开更多
In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson ...In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.展开更多
We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet...We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.展开更多
This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barr...This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.展开更多
In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results...In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.展开更多
基金supported by the Key Program of Scientific Research Fund for Young Teachers of AUST(QN2018109)the National Natural Science Foundation of China(11801008)+1 种基金supported by the Fundamental Research Funds for the Central Universities(2017B715X14)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX17_0508)
文摘In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.
基金partially supported by Ministerio de Educación y Ciencia,Spain,and FEDER,Projects MTM2013-43014-P and MTM 2016-75140-P
文摘This paper is devoted to the study of second order nonlinear difference equations. A Nonlocal Perturbation of a Dirichlet Boundary Value Problem is considered. An exhaustive study of the related Green's function to the linear part is done. The exact expression of the function is given, moreover the range of parameter for which it has constant sign is obtained. Using this, some existence results for the nonlinear problem are deduced from monotone iterative techniques, the classical Krasnoselski fixed point theorem or by application of recent fixed point theorems that combine both theories.
文摘Using invariant sets of descending flow and variational methods, we establish some sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions for second-order nonlinear difference equations with Dirichlet boundary value problem. Some results in the literature are improved.
基金The NSF(11326152) of Chinathe NSF(BK20130736) of Jiangsu Province of Chinathe NSF(CKJB201709) of Nanjing Institute of Technology
文摘Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.
基金Supported partially by the National Natural Science Foundation of China(10775175)
文摘In this article, we are concerned with the Dirichlet problem of the stationary von Neumann-Landau wave equation:{(-△x+△y)φ(x,y)=0,x,y∈Ωφ|δΩxδΩ=fwhere Ω is a bounded domain in R^n. By introducing anti-inner product spaces, we show the existence and uniqueness of the generalized solution for the above Dirichlet problem by functional-analytic methods.
文摘Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.
基金supported by the National NaturalScience Foundation of China(11971069 and 12126307)。
文摘In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution.
文摘In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.
文摘We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.
基金This research was supported by the National Natural Science Foundation of Chinathe Scientific Research Foundation of the Ministry of Education of China (02JA790014)+1 种基金the Natural Science Foundation of Fujian Province Education Department(JB00078)the Developmental Foundation of Science and Technology of Fuzhou University (2004-XQ-16)
文摘This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u = -λu, x ∈Ω , u = 0, x ∈δΩ, where Ω belong to R^n is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.
文摘In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.