The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, hug...The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, huge economic loss and long-term impact. In this paper, post-seismic debris flows distributed in 10 Wenchuan earthquake extremely stricken counties were verified and debris flow database consisting of 609 debris flows was established based on detailed investigation organized by Land and Resources Department of Sichuan Province. Combined with database and related studies, the impact of Wenchuan earthquake on debris flows was analyzed. And then variation of formation conditions including rainfall threshold and landform condition was analyzed by contrasting pre-seismic and post-seismic debris flows. Followed are some typical viewpoints on initiation mechanism of post-seismic debris flows. In the end of this paper, characteristics of postseismic debris flows triggered by subsequent rainstorms were comprehensively summarized, such as regional group occurrence, high frequency, high viscosity, chain effect, huge dynamics, large scale and long duration. We hope this paper will be helpful in understanding the formation mechanism, disaster characteristics and prevention countermeasures of post-seismic debris flows in Wenchuan earthquake extremely stricken areas.展开更多
The paper introduces the tectonic background, focal mechanism and distribution of aftershock of the Wenchuan earthquake on May 12,2008. The earthquake is considered to be the result of long-term interaction between th...The paper introduces the tectonic background, focal mechanism and distribution of aftershock of the Wenchuan earthquake on May 12,2008. The earthquake is considered to be the result of long-term interaction between the eastward movement of the Bayan Har Block and the Sichuan Basin. Most of the earthquake energy was released in an area (the seismic source body) 330kin long,52km wide and 20km deep over 100s. Energy release in the source body was extremely uneven, and strong ground motion in the epicenter area shows obvious asymmetrical character in the time and space scale. The high-intensity area is distributed along the source body, and the intensity distribution bears an obvious anomalous characteristic. The investigation results indicate that more than 90 percent of casualties caused by this earthquake were in the areas of intensity IX or above. Houses, schools and hospitals etc. suffered serious damage. Lifelines such as transportation, water conservation etc. also suffered significant damage. Besides, earthquake-triggered avalanches, landslides, mud-rock flows and so on were extremely serious. The tremendous earthquake disaster highlighted the deficiencies in disaster prevention and mitigation management, scientific earthquake research, technology and application of earthquake disaster prevention, and publicity of earthquake preparedness and disaster reduction.展开更多
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes....In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.展开更多
基金supported by the National Science Foundation of China(Grant No.41102226)the Project of China Special Project of Basic Work of Science and Technology(Grant No.2011FY110100-1)
文摘The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, huge economic loss and long-term impact. In this paper, post-seismic debris flows distributed in 10 Wenchuan earthquake extremely stricken counties were verified and debris flow database consisting of 609 debris flows was established based on detailed investigation organized by Land and Resources Department of Sichuan Province. Combined with database and related studies, the impact of Wenchuan earthquake on debris flows was analyzed. And then variation of formation conditions including rainfall threshold and landform condition was analyzed by contrasting pre-seismic and post-seismic debris flows. Followed are some typical viewpoints on initiation mechanism of post-seismic debris flows. In the end of this paper, characteristics of postseismic debris flows triggered by subsequent rainstorms were comprehensively summarized, such as regional group occurrence, high frequency, high viscosity, chain effect, huge dynamics, large scale and long duration. We hope this paper will be helpful in understanding the formation mechanism, disaster characteristics and prevention countermeasures of post-seismic debris flows in Wenchuan earthquake extremely stricken areas.
基金sponsored by the National Key Technology R&D Program(2006BAC13B01),China
文摘The paper introduces the tectonic background, focal mechanism and distribution of aftershock of the Wenchuan earthquake on May 12,2008. The earthquake is considered to be the result of long-term interaction between the eastward movement of the Bayan Har Block and the Sichuan Basin. Most of the earthquake energy was released in an area (the seismic source body) 330kin long,52km wide and 20km deep over 100s. Energy release in the source body was extremely uneven, and strong ground motion in the epicenter area shows obvious asymmetrical character in the time and space scale. The high-intensity area is distributed along the source body, and the intensity distribution bears an obvious anomalous characteristic. The investigation results indicate that more than 90 percent of casualties caused by this earthquake were in the areas of intensity IX or above. Houses, schools and hospitals etc. suffered serious damage. Lifelines such as transportation, water conservation etc. also suffered significant damage. Besides, earthquake-triggered avalanches, landslides, mud-rock flows and so on were extremely serious. The tremendous earthquake disaster highlighted the deficiencies in disaster prevention and mitigation management, scientific earthquake research, technology and application of earthquake disaster prevention, and publicity of earthquake preparedness and disaster reduction.
基金financially supported by the National Natural Science Foundation of China (Grant No.41572302)the Funds for Creative Research Groups of China (Grant No.41521002)
文摘In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.