The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected...The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.展开更多
This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the exp...This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the expected discounted penalty function satisfies, the paper derives the closed form solution by constructing an identical equation. The exact expression for Φ (0) is given using the Laplace transform technique when interest rate is constant. Applications of the results are given to the ruin probability and moments of the deficit at ruin.展开更多
In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu disc...In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu discounted penalty function, and obtain the exact solution when the initial surplus is zero. Dickson formulae are also generalized to the present surplus process.展开更多
In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk mode...In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk model.We also examine some asymptotic behaviors for the ruin probability as the initial capital tends to infinity.展开更多
In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a ...In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.展开更多
In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. A...In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.展开更多
We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-...We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-Shiu discounted penalty function. Then we give lower and upper bounds for the ruin probability. Finally, we present exact expressions for the ruin probability in a special case of renewal risk processes.展开更多
In this paper,we consider a generalization of the classical ruin model,where the income is random and the distribution of the time between two claim occurrences depends on the previous claim size.This model is more ap...In this paper,we consider a generalization of the classical ruin model,where the income is random and the distribution of the time between two claim occurrences depends on the previous claim size.This model is more appropriate than the classical ruin model.Explicit expression for the generating function of the Gerber-Shiu expected discounted penalty function are derived.A similar model is discussed.Finally,the result are showed by two examples.展开更多
This paper considers a class of delayed renewal risk processes with a threshold dividend strategy. The main result is an expression of the Gerber-Shiu expected discounted penalty function in the delayed renewal risk m...This paper considers a class of delayed renewal risk processes with a threshold dividend strategy. The main result is an expression of the Gerber-Shiu expected discounted penalty function in the delayed renewal risk model in terms of the corresponding Cerber-Shiu function in the ordinary renewal model. Subsequently, this relationship is considered in more detail in both the stationary renewal risk model and the ruin probability.展开更多
In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new stra...In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new strategy far exceeds that of the optimal barrier strategy (even that of the optimal dividend strategy). Some results on the advantages of the new strategy are obtained, and the methods for computing the value functions are provided. Numerical illustrations for Erlang (2) and compound Poisson risk models are also given.展开更多
We consider a ruin model with random income and dependence between claim sizes and claim intervals. In this paper, we extend the determinate premium income into a compound Poisson process and assume that the distribut...We consider a ruin model with random income and dependence between claim sizes and claim intervals. In this paper, we extend the determinate premium income into a compound Poisson process and assume that the distribution of the time between two claim occurrences depends on the previous claim size.Given the premium size is exponentially distributed, the(Gerber-Shiu) discounted penalty functions is derived.Finally, we consider a similar model.展开更多
基金supported by the National Natural science Foundation of china(70271069)
文摘The purpose of this paper is to consider the expected value of a discounted penalty due at ruin in the Erlang(2) risk process under constant interest force. An integro-differential equation satisfied by the expected value and a second-order differential equation for the Laplace transform of the expected value are derived. In addition, the paper will present the recursive algorithm for the joint distribution of the surplus immediately before ruin and the deficit at ruin. Finally, by the differential equation, the defective renewal equation and the explicit expression for the expected value are given in the interest-free case.
基金Supported by Key Project of National Social Science Fund (Grant No.06&ZD039)"Mathematics+X" Project of DUT
文摘This paper considers the expected discounted penalty function Φ(u) for the perturbed compound Poisson risk model with stochastic return on investments. After presenting an integro-differential equation that the expected discounted penalty function satisfies, the paper derives the closed form solution by constructing an identical equation. The exact expression for Φ (0) is given using the Laplace transform technique when interest rate is constant. Applications of the results are given to the ruin probability and moments of the deficit at ruin.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10926161, 10901086, 10871102)National Basic Research Program of China (973 Program) 2007CB814905the Research Fund for the Doctorial Program of Higher Education
文摘In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu discounted penalty function, and obtain the exact solution when the initial surplus is zero. Dickson formulae are also generalized to the present surplus process.
基金Supported by the National Natural Science Foundation of China (No.10771119)the Research Fund forthe Doctoral Program of Higher Education of China (No.20093705110002)
文摘In this paper,we study a general Lévy risk process with positive and negative jumps.A renewal equation and an infinite series expression are obtained for the expected discounted penalty function of this risk model.We also examine some asymptotic behaviors for the ruin probability as the initial capital tends to infinity.
文摘In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.
基金Surported by the Third Stage of 211 ProjectInnovative Talent Training Project of S-09110the Chongqing University Postgraduates’ Science and Innovation Fund (200911B1B0110327)
文摘In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.
文摘We consider that the reserve of an insurance company follows a renewal risk process with interest and dividend. For this risk process, we derive integral equations and exact infinite series expressions for the Cerber-Shiu discounted penalty function. Then we give lower and upper bounds for the ruin probability. Finally, we present exact expressions for the ruin probability in a special case of renewal risk processes.
文摘In this paper,we consider a generalization of the classical ruin model,where the income is random and the distribution of the time between two claim occurrences depends on the previous claim size.This model is more appropriate than the classical ruin model.Explicit expression for the generating function of the Gerber-Shiu expected discounted penalty function are derived.A similar model is discussed.Finally,the result are showed by two examples.
基金Supported by the Natural Science Foundation of Hunan (No. 08JJ3004)
文摘This paper considers a class of delayed renewal risk processes with a threshold dividend strategy. The main result is an expression of the Gerber-Shiu expected discounted penalty function in the delayed renewal risk model in terms of the corresponding Cerber-Shiu function in the ordinary renewal model. Subsequently, this relationship is considered in more detail in both the stationary renewal risk model and the ruin probability.
基金Supported by National Natural Science Foundation of China(Grant No.10871064)Scientific Research Funds of Hu'nan Provincial Education Department(08C883)Hu'nan Provincial Science and Technology Department(2009FJ3141)
文摘In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new strategy far exceeds that of the optimal barrier strategy (even that of the optimal dividend strategy). Some results on the advantages of the new strategy are obtained, and the methods for computing the value functions are provided. Numerical illustrations for Erlang (2) and compound Poisson risk models are also given.
基金Supported by the National Natural Science Foundation of China(No.11426051)National Social Science Fund of China(13BTJ008)+1 种基金Scientic and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1400521,No.KJ130658)the Fundamental Research Funds for the Central Universities(No.CDJXS10100018)
文摘We consider a ruin model with random income and dependence between claim sizes and claim intervals. In this paper, we extend the determinate premium income into a compound Poisson process and assume that the distribution of the time between two claim occurrences depends on the previous claim size.Given the premium size is exponentially distributed, the(Gerber-Shiu) discounted penalty functions is derived.Finally, we consider a similar model.