The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete p...The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete particles' motion in arbitrary flow field is obtained. The mathematical features of the linear form of the equation are clarified and analytical solution of the linearized equation is gotten by means of Laplace transform. According to above theoretical results, the effects of particles' properties on its motion in several typical flow field are studied, with some meaningful conclusions being reached.展开更多
The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavele...The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.展开更多
As a third generation light source, Shanghai Synchrotron Radiation Facility (SSRF) has up to 140 beam position monitors (BPM) installed to monitor the beam dynamics on its storage ring. Once the operation mode is chos...As a third generation light source, Shanghai Synchrotron Radiation Facility (SSRF) has up to 140 beam position monitors (BPM) installed to monitor the beam dynamics on its storage ring. Once the operation mode is chosen, the betatron functions are determined. Since the sinusoidal betatron oscillation is the dominant component of the transverse motion, these BPMs can be used to measure the motion to get the betatron functions. Three methods are compared to calculate the phase advance among the BPMs in this paper, aiming to find one or more feasible ways to check the beam optics in SSRF. Some experiments have also been made to verify the practicality of the phase information.展开更多
文摘The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete particles' motion in arbitrary flow field is obtained. The mathematical features of the linear form of the equation are clarified and analytical solution of the linearized equation is gotten by means of Laplace transform. According to above theoretical results, the effects of particles' properties on its motion in several typical flow field are studied, with some meaningful conclusions being reached.
文摘The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.
基金Supported by National Natural Science Foundation of China (No.11075198)
文摘As a third generation light source, Shanghai Synchrotron Radiation Facility (SSRF) has up to 140 beam position monitors (BPM) installed to monitor the beam dynamics on its storage ring. Once the operation mode is chosen, the betatron functions are determined. Since the sinusoidal betatron oscillation is the dominant component of the transverse motion, these BPMs can be used to measure the motion to get the betatron functions. Three methods are compared to calculate the phase advance among the BPMs in this paper, aiming to find one or more feasible ways to check the beam optics in SSRF. Some experiments have also been made to verify the practicality of the phase information.