The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming...The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming(VI-based SADP)algorithm,based on which the optimal controller is obtained.Different from the existing relevant work,the algorithm does not need to estimate the expectation(conditional expectation)and variance(conditional variance)of states or other relevant variables,and the convergence of the algorithm can be proved rigorously.A simulation example is given to verify the effectiveness of the proposed approach.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear...The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.展开更多
In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions a...In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions are proposed in the enlarged space containing both the state and its time difference which allow extra degree of freedom and lead to less conservative estimation of the domain of attraction. Furthermore, based on this result, a useful lemma and an iterative LMI-based optimization algorithm are also developed to maximize an estimation of domain of attraction. A numerical example illustrates the effectiveness of the proposed methods.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation ...Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criter...An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.展开更多
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is pr...This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.展开更多
In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achieve...In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.展开更多
This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller u...This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.展开更多
As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the ...As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.展开更多
In this paper a local maximum principle for the singular discrete-time linear systemMx(k)=φx(k-1)+Bu(k-1)is investigated.By using this local maximum principle we can discussthe linear-quadratic optimal regulator prob...In this paper a local maximum principle for the singular discrete-time linear systemMx(k)=φx(k-1)+Bu(k-1)is investigated.By using this local maximum principle we can discussthe linear-quadratic optimal regulator problem and the minimum energy problem for singulardiscrete-time linear systems.展开更多
This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator...This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.展开更多
The problems of stability analysis and controllers design for discrete-time linear systems subject to state saturation nonlinearities are investigated in this paper. Both full state saturation and partial state satura...The problems of stability analysis and controllers design for discrete-time linear systems subject to state saturation nonlinearities are investigated in this paper. Both full state saturation and partial state saturation are considered. It is well known to all that the controller design problem under state saturation is very difficult and complex to deal with. In order to overcome the difficulty, a new and tractable system is constructed, and it can be proved that the constructed system is with the same domain of attraction as the original system. With the aid of this property, to estimate the domain of attraction of the original system, an LMI-based method is presented for estimating the domain of attraction of the origin for the new constructed system under state saturation. Further, two optimization algorithms are developed for constructing dynamic output-feedback controllers and state feedback controllers, respectively, which guarantee that the domain of attraction of the origin for the closed-loop system is as 'large' as possible. An example is provided to demonstrate the effectiveness of the new method.展开更多
In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention...In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61673284the Science Development Project of Sichuan University under Grant No.2020SCUNL201。
文摘The optimal control problem with a long run average cost is investigated for unknown linear discrete-time systems with additive noise.The authors propose a value iteration-based stochastic adaptive dynamic programming(VI-based SADP)algorithm,based on which the optimal controller is obtained.Different from the existing relevant work,the algorithm does not need to estimate the expectation(conditional expectation)and variance(conditional variance)of states or other relevant variables,and the convergence of the algorithm can be proved rigorously.A simulation example is given to verify the effectiveness of the proposed approach.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
基金This work was partially supported by RGC Grant 7103/01P and the open project of the state key Laboratory of intelligent and Systems,Tsinghua University(No.0406).
文摘The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
基金supported by Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Programof National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions are proposed in the enlarged space containing both the state and its time difference which allow extra degree of freedom and lead to less conservative estimation of the domain of attraction. Furthermore, based on this result, a useful lemma and an iterative LMI-based optimization algorithm are also developed to maximize an estimation of domain of attraction. A numerical example illustrates the effectiveness of the proposed methods.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under Grant No.412813
文摘Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
文摘An uncertain nonlinear discrete-time system model with time-varying input delays for networked control systems (NCSs) is presented. The problem of exponential stability for the system is considered and some new criteria of exponential stability are obtained based on norm inequality methods. A numerical example is given todemonstrate that those criteria are useful to analyzing the stability of nonlinear NCSs.
文摘This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(61374073,61503356)Anhui Provincial Natural Science Foundation(1608085QF153)
文摘In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.
文摘This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.
基金Supported by National Natural Science Foundation of P. R. China (60174040)
文摘As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.
文摘In this paper a local maximum principle for the singular discrete-time linear systemMx(k)=φx(k-1)+Bu(k-1)is investigated.By using this local maximum principle we can discussthe linear-quadratic optimal regulator problem and the minimum energy problem for singulardiscrete-time linear systems.
基金supported by the National Natural Science Foundation of China(6117412161121003+2 种基金61203083)the Research Fund for the Doctoral Program of Higher Education of Chinathe Doctoral Foundation of University of Jinan(XBS1242)
文摘This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.
基金partly supported by the Funds for Creative Research Groups of China (No. 60821063)National 973 Program of China (No.2009CB320604)+4 种基金the Funds of National Science of China (No. 60974043, 60904010, 60804024, 61074090)the 111 Project (No. B08015)the Funds of Doctoral Program of Ministry of Education, China (20100042110027)a Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201157)the Liaoning Education Department Plan Project of China (No. L2010426)
文摘The problems of stability analysis and controllers design for discrete-time linear systems subject to state saturation nonlinearities are investigated in this paper. Both full state saturation and partial state saturation are considered. It is well known to all that the controller design problem under state saturation is very difficult and complex to deal with. In order to overcome the difficulty, a new and tractable system is constructed, and it can be proved that the constructed system is with the same domain of attraction as the original system. With the aid of this property, to estimate the domain of attraction of the original system, an LMI-based method is presented for estimating the domain of attraction of the origin for the new constructed system under state saturation. Further, two optimization algorithms are developed for constructing dynamic output-feedback controllers and state feedback controllers, respectively, which guarantee that the domain of attraction of the origin for the closed-loop system is as 'large' as possible. An example is provided to demonstrate the effectiveness of the new method.
基金Supported by National Natural Science Foundation of China(61174121, 61121003, 61203083) the Research Fund for the Doctoral Program of Higher Education of China Doctoral Foundation of University of Jinan (XBS1242)
基金Sponsored by the National Defense Basic Research Foundation of China (Grant No. 9140A17030207HT01)
文摘In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.