Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints...Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.展开更多
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ...Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.展开更多
Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusi...Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density(PSD), and the other is common spatial patterns(CSP). Classifiers are designed based on the well-known linear discrimination analysis(LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.展开更多
The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-20...The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-2014, by adopting the methods of mist-nets and point counts to evaluate spatial niche partitioning and morphological differentiations, we explored the coexistence mechanisms of seven sympatric fulvettas in Ailao Mountains, Ejia town, Yunnan Province, China. The microhabitats of these seven fulvettas were significantly different in elevation, roost site height and vegetation coverage, indicating a spatial niche segregation in different levels. Approximately, 90.30% of the samples were correctly classified by linear discriminant analysis(LDA) with correct rates at 91.20%-100%, except the White-browed fulvetta(Alcippe vinipectus)(65.4%) and the Streak-throated fulvetta(A. cinereiceps)(74.6%). The seven fulvettas were classified into four guilds based on their specific morphological characters, suggesting that the species in each guild use their unique feeding ways to realize resource partitioning in the overlapped areas. These finding indicate that through multi-dimensional spatial niche segregation and divergence in resource utilizing, the interspecific competition among these seven fulvettas is minimized, whereas, coexistence is promoted.展开更多
文摘Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.
基金Project(2019JJ40047)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(kq2014057)supported by the Changsha Municipal Natural Science Foundation,China。
文摘Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.
文摘Due to the volume conduction,electroencephalogram(EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density(PSD), and the other is common spatial patterns(CSP). Classifiers are designed based on the well-known linear discrimination analysis(LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.
基金supported by the National Natural Science Foundation of China(Y201011041)the National Science and Technology Basic Project of the Ministry of Science and Technology of China(2008FY110300)the Natural Science Foundation of Yunnan Province(Y103841101)
文摘The coexistence of ecologically similar species sharing sympatric areas is a central issue of community ecology. Niche differentiation is required at least in one dimension to avoid competitive exclusion. From 2012-2014, by adopting the methods of mist-nets and point counts to evaluate spatial niche partitioning and morphological differentiations, we explored the coexistence mechanisms of seven sympatric fulvettas in Ailao Mountains, Ejia town, Yunnan Province, China. The microhabitats of these seven fulvettas were significantly different in elevation, roost site height and vegetation coverage, indicating a spatial niche segregation in different levels. Approximately, 90.30% of the samples were correctly classified by linear discriminant analysis(LDA) with correct rates at 91.20%-100%, except the White-browed fulvetta(Alcippe vinipectus)(65.4%) and the Streak-throated fulvetta(A. cinereiceps)(74.6%). The seven fulvettas were classified into four guilds based on their specific morphological characters, suggesting that the species in each guild use their unique feeding ways to realize resource partitioning in the overlapped areas. These finding indicate that through multi-dimensional spatial niche segregation and divergence in resource utilizing, the interspecific competition among these seven fulvettas is minimized, whereas, coexistence is promoted.