Animal-based research and drug safety studies are essential to understanding the mysteries of nature and the long-term survival of humans.Due to the rapid increase in the global human population,conflict-and economica...Animal-based research and drug safety studies are essential to understanding the mysteries of nature and the long-term survival of humans.Due to the rapid increase in the global human population,conflict-and economically driven human migration,tourism-related activities,densely populated metropolitan areas,and local policies,humans will be affected by a multitude of novel disease-causing microorganisms and civilizational diseases.Despite disparities among countries,recent and planned changes in regulations concerning animal research and drug safety studies could have detrimental effects on both the animal research community and nations lacking sufficient social support systems.Based on existing scientific literature,I argue that we need animal research encompassing aspects such as animal development,behavior,drug safety studies,and for the understanding of future civilizational diseases.Depending on the nature of the research questions and local challenges,a suitable animal model organism should be made mandatory.展开更多
At present,treatments for Alzheimer's disease can temporarily relieve symptoms but cannot prevent the decline of cognitive ability and other neurodegenerative changes.Dendrobium nobile Lindl alkaloid is the main a...At present,treatments for Alzheimer's disease can temporarily relieve symptoms but cannot prevent the decline of cognitive ability and other neurodegenerative changes.Dendrobium nobile Lindl alkaloid is the main active component of Dendrobium nobile Lindl.Dendrobium nobile Lindl alkaloid has been shown to resist aging,prolong life span,and exhibit immunomodulatory effects in animals.This review summarizes the mechanisms behind the neuroprotective effects reported in Alzheimer's disease animal models.The neuroprotective effects of Dendrobium nobile Lindl alkaloid have not been studied in patients.The mechanisms by which Dendrobium nobile Lindl alkaloid has been reported to improve cognitive dysfunction in Alzheimer's disease animal models may be associated with extracellular amyloid plaque production,regulation of tau protein hyperphosphorylation,inhibition of neuroinflammation and neuronal apoptosis,activation of autophagy,and enhanced synaptic connections.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve...Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.展开更多
Acute kidney injury(AKI)and chronic kidney disease(CKD)are significant public health issues associated with a long-term increase in mortality risk,resulting from various etiologies including renal ischemia,sepsis,drug...Acute kidney injury(AKI)and chronic kidney disease(CKD)are significant public health issues associated with a long-term increase in mortality risk,resulting from various etiologies including renal ischemia,sepsis,drug toxicity,and diabetes mellitus.Numerous preclinical models have been developed to deepen our understanding of the pathophysiological mechanisms and therapeutic approaches for kidney diseases.Among these,rodent models have proven to be powerful tools in the discovery of novel therapeutics,while the development of kidney organoids has emerged as a promising advancement in the field.This review provides a comprehensive analysis of the construction methodologies,underlying biological mechanisms,and recent therapeutic developments across different AKI and CKD models.Additionally,this review summarizes the advantages,limitations,and challenges inherent in these preclinical models,thereby contributing robust evidence to support the development of effective therapeutic strategies.展开更多
Neurodegeneration is a catastrophic process that develops progressive damage leading to functional andstructural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age.Animalm...Neurodegeneration is a catastrophic process that develops progressive damage leading to functional andstructural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age.Animalmodels do not reflect the pathophysiology observed in humans due to distinct differences between the neuralpathways,gene expression patterns,neuronal plasticity,and other disease-related mechanisms in animals andhumans.Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting thecomplex pathophysiology of neurodegenerative diseases.Today,modern,engineered techniques are applied to developmulticellular,intricate in vitro models and to create the closest microenvironment simulating biological,biochemical,and mechanical characteristics of the in vivo degenerating tissue.In THIS review,the capabilities and shortcomings ofscaffold-based and scaffold-free techniques,organoids,and microfluidic models that best reflect neurodegeneration invitro in the biomimetic framework are discussed.展开更多
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r...This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.展开更多
BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicti...BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicting cyanotic and acyanotic congenital heart disease in children during pregnancy and identify their potential risk factors.METHODS The data were collected from the Pediatric Cardiology Department at Chaudhry Pervaiz Elahi Institute of Cardiology Multan,Pakistan from December 2017 to October 2019.A sample of 3900 mothers whose children were diagnosed with identify the potential outliers.Different machine learning models were compared,and the best-fitted model was selected using the area under the curve,sensitivity,and specificity of the models.RESULTS Out of 3900 patients included,about 69.5%had acyanotic and 30.5%had cyanotic congenital heart disease.Males had more cases of acyanotic(53.6%)and cyanotic(54.5%)congenital heart disease as compared to females.The odds of having cyanotic was 1.28 times higher for children whose mothers used more fast food frequently during pregnancy.The artificial neural network model was selected as the best predictive model with an area under the curve of 0.9012,sensitivity of 65.76%,and specificity of 97.23%.CONCLUSION Children having a positive family history are at very high risk of having cyanotic and acyanotic congenital heart disease.Males are more at risk and their mothers need more care,good food,and physical activity during pregnancy.The best-fitted model for predicting cyanotic and acyanotic congenital heart disease is the artificial neural network.The results obtained and the best model identified will be useful for medical practitioners and public health scientists for an informed decision-making process about the earlier diagnosis and improve the health condition of children in Pakistan.展开更多
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra...Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.展开更多
Pluripotent stem cells are unspecialized cells withunlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source ...Pluripotent stem cells are unspecialized cells withunlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem(i PS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived i PS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming m RNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of i PS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of i PS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.展开更多
The main purpose of this presented article was to explain the need to study the amount of heavy metal salts in the environment where animals live, in the water, in air, and in the food and fodder consumed. This articl...The main purpose of this presented article was to explain the need to study the amount of heavy metal salts in the environment where animals live, in the water, in air, and in the food and fodder consumed. This article presents materials from the literature on the effects of heavy metal salts on the body of animals and the environment in which they live. The cited analytical data showed that the general information on the negative effects of heavy metal salts on the body is sufficient, but their effects on the digestive tract and morpho-functional properties of rabbits should be studied in depth. Therefore, we planned to focus our scientific work on this topic. The article mainly refers to salts of heavy metals cadmium, lead, and mercury (Cd, Pb, Hg). It is noted in the literature that heavy metal salts have a negative effect on the body of animals. We focused mainly on data on the effects of heavy metals on farm animals, including rabbits. But it is clear that the authors referred to were referring to experimental animals. These negative effects are manifested in the form of disorders of digestive functions, disorders of neurovegetative processes, increasing incidence of cardiovascular disease, rapid heart failure, deterioration of calcium metabolism, as well as impaired haemoglobin metabolism. Disorders of protein metabolism manifest themselves in the form of cases of hyperproteinaemia and dysproteinaemia. The results of the evaluation of the organism of healthy animals in chemically and radioactively contaminated areas showed the accumulation of significant levels of chemical elements in their organism. We mainly looked at the effects of heavy metal salts on farm animals. The cited analytical data showed that the general information on the negative effects of heavy metal salts on the body is sufficient, but the effects on the activity of organ systems in the body (respiration, blood and blood circulation, digestion, reproduction, productivity and immunological systems) have not been comprehensively studied.展开更多
Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed e...Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed effect of HBO on recovery of injure nerves. Results Compared with control group, cerebrospinal fluid induced peak potential and incubation period in HBO group were significantly recovered(P<0.05).HBO could accelerated repair of injured nerves. Conclusion HBO could relieve injury of nerves during treatment of organophosphorus poisoning.展开更多
Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attr...Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attributed to a delayed allergic reaction to allergens and a Th2-type immune response,the exact pathogenesis is complex,and the efficacy of existing treatments is unsatisfactory.Therefore,the study of the pathophysiological process of EOE has received increasing attention.Animal models have been used extensively to study the molecular mechanism of EOE pathogenesis and also provide a preclinical platform for human clinical intervention studies of novel therapeutic agents.To maximize the use of existing animal models of EOE,it is important to understand the advantages or limitations of each modeling approach.This paper systematically describes the selection of experimental animals,types of allergens,and methods of sensitization and excitation during the preparation of animal models of EoE.It also discusses the utility and shortcomings of each model with the aim of providing the latest perspectives on EoE models and leading to better choices of animal models.展开更多
Alzheimer's disease(AD)is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss.Emerging evidence suggests that autophagy plays an important role in the pathogene...Alzheimer's disease(AD)is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss.Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta(Aβ)and tau metabolism,and that autophagy dysfunction exacerbates amyloidosis and tau pathology.Therefore,targeting autophagy may be an effective approach for the treatment of AD.Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases.This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models.Finally,the opportunities,difficulties,and future directions of autophagy targeting in AD therapy are discussed.展开更多
Diabetic kidney disease(DKD)is a prevalent complication of diabetes,often leading to end-stage renal disease.Animal models have been widely used to study the pathogenesis of DKD and evaluate potential therapies.Howeve...Diabetic kidney disease(DKD)is a prevalent complication of diabetes,often leading to end-stage renal disease.Animal models have been widely used to study the pathogenesis of DKD and evaluate potential therapies.However,current animal models often fail to fully capture the pathological characteristics of renal injury observed in clinical patients with DKD.Additionally,modeling DKD is often a time-consuming,costly,and labor-intensive process.The current review aims to summarize modeling strategies in the establishment of DKD animal models by utilizing meta-analysis related methods and to aid in the optimization of these models for future research.A total of 1215 articles were retrieved with the keywords of“diabetic kidney disease”and“animal experiment”in the past 10 years.Following screening,84 articles were selected for inclusion in the meta-analysis.Review manager 5.4.1 was employed to analyze the changes in blood glucose,glycosylated hemoglobin,total cholesterol,triglyceride,serum creatinine,blood urea nitrogen,and urinary albumin excretion rate in each model.Renal lesions shown in different models that were not suitable to be included in the metaanalysis were also extensively discussed.The above analysis suggested that combining various stimuli or introducing additional renal injuries to current models would be a promising avenue to overcome existing challenges and limitations.In conclusion,our review article provides an in-depth analysis of the limitations in current DKD animal models and proposes strategies for improving the accuracy and reliability of these models that will inspire future research efforts in the DKD research field.展开更多
Parkinson’s disease(PD)relates to defective mitochondrial quality control in the dopaminergic motor network.Genetic studies have revealed that PINK1 and Parkin mutations are indicative of a heightened propensity to P...Parkinson’s disease(PD)relates to defective mitochondrial quality control in the dopaminergic motor network.Genetic studies have revealed that PINK1 and Parkin mutations are indicative of a heightened propensity to PD onset,pinpointing mitophagy and inflammation as the culprit pathways involved in neuronal loss in the substantia nigra(SNpc).In a reciprocal manner,LRRK2 functions in the regulation of basal flux and inflammatory responses responsible for PINK1/Parkin-dependent mitophagy activation.Pharmacological intervention in these diseasemodifying pathways may facilitate the development of novel PD therapeutics,despite the current lack of an established drug evaluation model.As such,we reviewed the feasibility of employing the versatile global Pink1knockout(KO)rat model as a self-sufficient,spontaneous PD model for investigating both disease etiology and drug pharmacology.These rats retain clinical features encompassing basal mitophagic flux changes with PD progression.We demonstrate the versatility of this PD rat model based on the incorporation of additional experimental insults to recapitulate the proinflammatory responses observed in PD patients.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie...Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.展开更多
基金Narodowe Centrum Nauki,Grant/Award Number:SONATA 2021/43/D/NZ3/01798 and SONATA BIS 2020/38/E/NZ3/00090。
文摘Animal-based research and drug safety studies are essential to understanding the mysteries of nature and the long-term survival of humans.Due to the rapid increase in the global human population,conflict-and economically driven human migration,tourism-related activities,densely populated metropolitan areas,and local policies,humans will be affected by a multitude of novel disease-causing microorganisms and civilizational diseases.Despite disparities among countries,recent and planned changes in regulations concerning animal research and drug safety studies could have detrimental effects on both the animal research community and nations lacking sufficient social support systems.Based on existing scientific literature,I argue that we need animal research encompassing aspects such as animal development,behavior,drug safety studies,and for the understanding of future civilizational diseases.Depending on the nature of the research questions and local challenges,a suitable animal model organism should be made mandatory.
基金supported by Shijingshan’s Tutor Studio of Pharmacology,No.GZS-2016-07(to JSS)the Construction of National First Class Pharmacy Disciplineb,No.GESR-2017-85(to JSS)+1 种基金the Master Start Foundation of Zunyi Medical University,No.F-839(to DDL)a grant from Guizhou Chinese Medicine Administration,No.QZYY-2018-025(to DDL)。
文摘At present,treatments for Alzheimer's disease can temporarily relieve symptoms but cannot prevent the decline of cognitive ability and other neurodegenerative changes.Dendrobium nobile Lindl alkaloid is the main active component of Dendrobium nobile Lindl.Dendrobium nobile Lindl alkaloid has been shown to resist aging,prolong life span,and exhibit immunomodulatory effects in animals.This review summarizes the mechanisms behind the neuroprotective effects reported in Alzheimer's disease animal models.The neuroprotective effects of Dendrobium nobile Lindl alkaloid have not been studied in patients.The mechanisms by which Dendrobium nobile Lindl alkaloid has been reported to improve cognitive dysfunction in Alzheimer's disease animal models may be associated with extracellular amyloid plaque production,regulation of tau protein hyperphosphorylation,inhibition of neuroinflammation and neuronal apoptosis,activation of autophagy,and enhanced synaptic connections.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
基金supported by the National Key Research and Development Program of China (2021YFA0805300,2021YFA0805200)National Natural Science Foundation of China (32170981,82371874,82394422,82171244,82071421,82271902)+1 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001)。
文摘Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LZ22H050001)National Natural Science Foundation of China(82270704,81970573)+1 种基金“Lingyan”R&D Research and Development Project(2024C03165)Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents。
文摘Acute kidney injury(AKI)and chronic kidney disease(CKD)are significant public health issues associated with a long-term increase in mortality risk,resulting from various etiologies including renal ischemia,sepsis,drug toxicity,and diabetes mellitus.Numerous preclinical models have been developed to deepen our understanding of the pathophysiological mechanisms and therapeutic approaches for kidney diseases.Among these,rodent models have proven to be powerful tools in the discovery of novel therapeutics,while the development of kidney organoids has emerged as a promising advancement in the field.This review provides a comprehensive analysis of the construction methodologies,underlying biological mechanisms,and recent therapeutic developments across different AKI and CKD models.Additionally,this review summarizes the advantages,limitations,and challenges inherent in these preclinical models,thereby contributing robust evidence to support the development of effective therapeutic strategies.
文摘Neurodegeneration is a catastrophic process that develops progressive damage leading to functional andstructural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age.Animalmodels do not reflect the pathophysiology observed in humans due to distinct differences between the neuralpathways,gene expression patterns,neuronal plasticity,and other disease-related mechanisms in animals andhumans.Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting thecomplex pathophysiology of neurodegenerative diseases.Today,modern,engineered techniques are applied to developmulticellular,intricate in vitro models and to create the closest microenvironment simulating biological,biochemical,and mechanical characteristics of the in vivo degenerating tissue.In THIS review,the capabilities and shortcomings ofscaffold-based and scaffold-free techniques,organoids,and microfluidic models that best reflect neurodegeneration invitro in the biomimetic framework are discussed.
文摘This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.
文摘BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicting cyanotic and acyanotic congenital heart disease in children during pregnancy and identify their potential risk factors.METHODS The data were collected from the Pediatric Cardiology Department at Chaudhry Pervaiz Elahi Institute of Cardiology Multan,Pakistan from December 2017 to October 2019.A sample of 3900 mothers whose children were diagnosed with identify the potential outliers.Different machine learning models were compared,and the best-fitted model was selected using the area under the curve,sensitivity,and specificity of the models.RESULTS Out of 3900 patients included,about 69.5%had acyanotic and 30.5%had cyanotic congenital heart disease.Males had more cases of acyanotic(53.6%)and cyanotic(54.5%)congenital heart disease as compared to females.The odds of having cyanotic was 1.28 times higher for children whose mothers used more fast food frequently during pregnancy.The artificial neural network model was selected as the best predictive model with an area under the curve of 0.9012,sensitivity of 65.76%,and specificity of 97.23%.CONCLUSION Children having a positive family history are at very high risk of having cyanotic and acyanotic congenital heart disease.Males are more at risk and their mothers need more care,good food,and physical activity during pregnancy.The best-fitted model for predicting cyanotic and acyanotic congenital heart disease is the artificial neural network.The results obtained and the best model identified will be useful for medical practitioners and public health scientists for an informed decision-making process about the earlier diagnosis and improve the health condition of children in Pakistan.
文摘Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.
基金Supported by CREST fellowship from Department of Biotechnology,Ministry of Science and Technology,Government of India(DK)International fellowship for Ph D from ICAR(TRT),Government of IndiaInternational training in generation of i PS cells from NAIP,ICAR,Government of India(TA)
文摘Pluripotent stem cells are unspecialized cells withunlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem(i PS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived i PS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming m RNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of i PS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of i PS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
文摘The main purpose of this presented article was to explain the need to study the amount of heavy metal salts in the environment where animals live, in the water, in air, and in the food and fodder consumed. This article presents materials from the literature on the effects of heavy metal salts on the body of animals and the environment in which they live. The cited analytical data showed that the general information on the negative effects of heavy metal salts on the body is sufficient, but their effects on the digestive tract and morpho-functional properties of rabbits should be studied in depth. Therefore, we planned to focus our scientific work on this topic. The article mainly refers to salts of heavy metals cadmium, lead, and mercury (Cd, Pb, Hg). It is noted in the literature that heavy metal salts have a negative effect on the body of animals. We focused mainly on data on the effects of heavy metals on farm animals, including rabbits. But it is clear that the authors referred to were referring to experimental animals. These negative effects are manifested in the form of disorders of digestive functions, disorders of neurovegetative processes, increasing incidence of cardiovascular disease, rapid heart failure, deterioration of calcium metabolism, as well as impaired haemoglobin metabolism. Disorders of protein metabolism manifest themselves in the form of cases of hyperproteinaemia and dysproteinaemia. The results of the evaluation of the organism of healthy animals in chemically and radioactively contaminated areas showed the accumulation of significant levels of chemical elements in their organism. We mainly looked at the effects of heavy metal salts on farm animals. The cited analytical data showed that the general information on the negative effects of heavy metal salts on the body is sufficient, but the effects on the activity of organ systems in the body (respiration, blood and blood circulation, digestion, reproduction, productivity and immunological systems) have not been comprehensively studied.
文摘Objective To investigate the effect of hyperbarci oxygen(HBO) on recovery of nerves injury in rats suffered from acute organophosphorus poisoning. Method We established organophosphorus poisoning models and observed effect of HBO on recovery of injure nerves. Results Compared with control group, cerebrospinal fluid induced peak potential and incubation period in HBO group were significantly recovered(P<0.05).HBO could accelerated repair of injured nerves. Conclusion HBO could relieve injury of nerves during treatment of organophosphorus poisoning.
基金supported by Natural Science Foundation of Hubei Province(2021CFB401)。
文摘Eosinophilic oesophagitis(EoE)is an allergen/immune-mediated chronic esophageal disease characterized by esophageal mucosal eosinophilic infiltration and esophageal dysfunction.Although the disease was originally attributed to a delayed allergic reaction to allergens and a Th2-type immune response,the exact pathogenesis is complex,and the efficacy of existing treatments is unsatisfactory.Therefore,the study of the pathophysiological process of EOE has received increasing attention.Animal models have been used extensively to study the molecular mechanism of EOE pathogenesis and also provide a preclinical platform for human clinical intervention studies of novel therapeutic agents.To maximize the use of existing animal models of EOE,it is important to understand the advantages or limitations of each modeling approach.This paper systematically describes the selection of experimental animals,types of allergens,and methods of sensitization and excitation during the preparation of animal models of EoE.It also discusses the utility and shortcomings of each model with the aim of providing the latest perspectives on EoE models and leading to better choices of animal models.
基金supported by the National Natural Science Foundation of China (82271455)Guangdong Basic and Applied Basic Research Foundation (2022A1515012416)+6 种基金Science and Technology Development FundMacao SAR (0128/2019/A3,0025/2022/A1)Shenzhen Fundamental Research Program (SGDX20210823103804030)University of Macao Grants (MYRG2022-00094-ICMS)awarded to J.H.L.partially supported by the National Key R&D Program of China (2021YFA0805901)National Natural Science Foundation of China (82070199)Guangdong Basic and Applied Basic Research Foundation (2021A1515220078)awarded to D.S.T。
文摘Alzheimer's disease(AD)is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss.Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta(Aβ)and tau metabolism,and that autophagy dysfunction exacerbates amyloidosis and tau pathology.Therefore,targeting autophagy may be an effective approach for the treatment of AD.Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases.This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models.Finally,the opportunities,difficulties,and future directions of autophagy targeting in AD therapy are discussed.
文摘Diabetic kidney disease(DKD)is a prevalent complication of diabetes,often leading to end-stage renal disease.Animal models have been widely used to study the pathogenesis of DKD and evaluate potential therapies.However,current animal models often fail to fully capture the pathological characteristics of renal injury observed in clinical patients with DKD.Additionally,modeling DKD is often a time-consuming,costly,and labor-intensive process.The current review aims to summarize modeling strategies in the establishment of DKD animal models by utilizing meta-analysis related methods and to aid in the optimization of these models for future research.A total of 1215 articles were retrieved with the keywords of“diabetic kidney disease”and“animal experiment”in the past 10 years.Following screening,84 articles were selected for inclusion in the meta-analysis.Review manager 5.4.1 was employed to analyze the changes in blood glucose,glycosylated hemoglobin,total cholesterol,triglyceride,serum creatinine,blood urea nitrogen,and urinary albumin excretion rate in each model.Renal lesions shown in different models that were not suitable to be included in the metaanalysis were also extensively discussed.The above analysis suggested that combining various stimuli or introducing additional renal injuries to current models would be a promising avenue to overcome existing challenges and limitations.In conclusion,our review article provides an in-depth analysis of the limitations in current DKD animal models and proposes strategies for improving the accuracy and reliability of these models that will inspire future research efforts in the DKD research field.
基金supported by the KIZ-CUHK Joint Lab of Bioresources and Molecular Research of Common Diseases(4750378)the VC Discretionary Fund provided to the Hong Kong Branch of Chinese Academy of Science Center for Excellence in Animal Evolution and Genetics(Acc 8601011)partially by the State Key Laboratory CUHKJinan MOE Key Laboratory for Regenerative medicine(2622009)。
文摘Parkinson’s disease(PD)relates to defective mitochondrial quality control in the dopaminergic motor network.Genetic studies have revealed that PINK1 and Parkin mutations are indicative of a heightened propensity to PD onset,pinpointing mitophagy and inflammation as the culprit pathways involved in neuronal loss in the substantia nigra(SNpc).In a reciprocal manner,LRRK2 functions in the regulation of basal flux and inflammatory responses responsible for PINK1/Parkin-dependent mitophagy activation.Pharmacological intervention in these diseasemodifying pathways may facilitate the development of novel PD therapeutics,despite the current lack of an established drug evaluation model.As such,we reviewed the feasibility of employing the versatile global Pink1knockout(KO)rat model as a self-sufficient,spontaneous PD model for investigating both disease etiology and drug pharmacology.These rats retain clinical features encompassing basal mitophagic flux changes with PD progression.We demonstrate the versatility of this PD rat model based on the incorporation of additional experimental insults to recapitulate the proinflammatory responses observed in PD patients.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by the National Natural Science Foundation of China (31970574)。
文摘Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine.