The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power...Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm,namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complex power grids,extend system operators' capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.展开更多
The economic emission dispatch (EED) problem minimizes two competing objective functions, fuel cost and emission, while satisfying several equality and inequality constraints. Since the availability of wind power (WP)...The economic emission dispatch (EED) problem minimizes two competing objective functions, fuel cost and emission, while satisfying several equality and inequality constraints. Since the availability of wind power (WP) is highly dependent on the weather conditions, the inclusion of a significant amount of WP into EED will result in additional constraints to accommodate the intermittent nature of the output. In this paper, a new correlated bivariate Weibull probability distribution model is proposed to analytically remove the assumption that the total WP is characterized by a single random variable. This probability distribution is used as chance constraint. The inclusion of the probability distribution of stochastic WP in the EED problem is defined as the here-and-now strategy. Non-dominated sorting genetic algorithm built in MATLAB is used to handle the EED problem as a multi-objective optimization problem. A 69-bus ten-unit test system with non-smooth cost function is used to test the effectiveness of the proposed model.展开更多
Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has...Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.展开更多
为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优...为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。展开更多
文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采...文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采用了带有Monte Carlo模拟的遗传算法对模型进行求解。文章采用了负荷缺失率(load loss rate,LLR)和置信概率对系统的安全性进行评价,并分析了其对系统调度结果的影响。仿真结果表明,文中所提出的考虑新能源出力不确定性的风-光-柴-储系统调度模型,可以降低新能源出力不确定性对系统的影响,且该方法可以有效地平衡系统的经济性和安全性。展开更多
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
基金supported by State Grid Corporation of China(SGCC)Science and Technology Project SGTJDK00DWJS1700060
文摘Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus,the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm,namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complex power grids,extend system operators' capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.
文摘The economic emission dispatch (EED) problem minimizes two competing objective functions, fuel cost and emission, while satisfying several equality and inequality constraints. Since the availability of wind power (WP) is highly dependent on the weather conditions, the inclusion of a significant amount of WP into EED will result in additional constraints to accommodate the intermittent nature of the output. In this paper, a new correlated bivariate Weibull probability distribution model is proposed to analytically remove the assumption that the total WP is characterized by a single random variable. This probability distribution is used as chance constraint. The inclusion of the probability distribution of stochastic WP in the EED problem is defined as the here-and-now strategy. Non-dominated sorting genetic algorithm built in MATLAB is used to handle the EED problem as a multi-objective optimization problem. A 69-bus ten-unit test system with non-smooth cost function is used to test the effectiveness of the proposed model.
文摘Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.
文摘为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。
文摘文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采用了带有Monte Carlo模拟的遗传算法对模型进行求解。文章采用了负荷缺失率(load loss rate,LLR)和置信概率对系统的安全性进行评价,并分析了其对系统调度结果的影响。仿真结果表明,文中所提出的考虑新能源出力不确定性的风-光-柴-储系统调度模型,可以降低新能源出力不确定性对系统的影响,且该方法可以有效地平衡系统的经济性和安全性。