期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Formation of In-Situ Dispersion Strengthening Particles in Cast FeCrAl Alloy
1
作者 FENG Shuo HAN Wei +2 位作者 LUO He-li Karin G LI Chang-hai 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2010年第2期74-78,共5页
In order to fabricate dispersion strengthened alloys strengthened by submicron-sized or nano-sized stable particles through casting routes, understanding of the formation process of dispersion strengthening particles ... In order to fabricate dispersion strengthened alloys strengthened by submicron-sized or nano-sized stable particles through casting routes, understanding of the formation process of dispersion strengthening particles in metal melt is of significance. Thus, nano NiO and TiO2 particles were selected as reactant to form in-situ dispersion strengthening oxide particles in Fe20Cr5Al alloy. Nano NiO and TiO2 particle powder was separately dispersed into nano Ni powder first. The loose mixed nano powder was added in Fe20CrSAl alloy melt when pouring the melt into mold. The study shows that nano NiO particles were not as effective as nano TiO2 particles in forming dispersion strengthening Al2O3 particles. The final diameters of dispersion strengthening oxide particles arose from nano TiO2 particles were of submicron. The Brownian collision of particles had caused this coarsening. 展开更多
关键词 in-situ particle dispersion strengthening particle formation east FeCrAl alloy
原文传递
Influence of nano-Al_2O_3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites 被引量:4
2
作者 Xiang Zhao Lei-chen Guo +7 位作者 Long Zhang Ting-ting Jia Cun-guang Chen Jun-jie Hao Hui-ping Shao Zhi-meng Guo Ji Luo Jun-bin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1444-1451,共8页
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi... The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body. 展开更多
关键词 metal matrix composites oxide dispersion strengthening copper nanoparticles microstructure mechanical properties tribological properties
下载PDF
Comparison study on the annealing behaviors of dispersion strengthened copper alloys with different nanoparticles 被引量:1
3
作者 GUO Mingxing WANG Mingpu LEI Ruoshan TAN Wang JIN Peng 《Rare Metals》 SCIE EI CAS CSCD 2007年第5期456-462,共7页
The hardness measurement,optical microscopy (OM),and transmission electron microscopy (TEM) microstructure observation on the annealing behaviors of Cu-Al2O3 (2.25 vol.% and 0.54 vol.% Al2O3) and Cu-0.52vol.%Nb ... The hardness measurement,optical microscopy (OM),and transmission electron microscopy (TEM) microstructure observation on the annealing behaviors of Cu-Al2O3 (2.25 vol.% and 0.54 vol.% Al2O3) and Cu-0.52vol.%Nb alloys were carried out. The results show that with the increase of annealing temperature,the hardness of Cu-Al2O3 alloys decreases slowly. No change of the fiber structure formed by cold rolling in the Cu-2.25vol.%Al2O3 alloy is observed even after annealing at 900℃and the higher dislocation density can still be observed by TEM. Less combination of fiber formed by cold rolling and subgrains are observed in the Cu-0.54vol.%Al2O3 alloy annealed at 900℃. With the increase of annealing temperature,the hardness of the Cu-0.52vol.%Nb alloy exhibits a general decreasing trend,and its falling rate is higher than that of the Cu-Al2O3 alloys,indicating that its ability of resistance to softening at elevated temperature is weaker than that of the Cu-Al2O3 alloys. However,when annealed at a temperature of 300-400℃,probably owing to the precipitation strengthening of niobium,the hardness of the Cu-0.52vol.%Nb alloy arises slightly. The fibers formed by cold rolling be-come un-clear and un-straight and have less combination,and considerably more subgrains are observed by TEM. 展开更多
关键词 high-temperature properties hardness measurement Cu-Al2O3 alloy Cu-Nb alloy dispersion strengthening cold working ANNEALING
下载PDF
Microstructure-Property Correlation in AI_4C_3 Dispersion Strengthened Al Composite
4
作者 Jing BI Zongyi MA Shengjin WU Yuxiong LU Hongwei SHEN Institute of Metal Research,Academia Sinica,Shenyang,110015,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第1期61-64,共4页
The microstructure and tensile properties of Al_4C_3 dispersion strengthened Al composite fabricated by reaction milling technique were investigated.It is indicated that the rod-like Al_4C_3 dispersoids having a diame... The microstructure and tensile properties of Al_4C_3 dispersion strengthened Al composite fabricated by reaction milling technique were investigated.It is indicated that the rod-like Al_4C_3 dispersoids having a diameter of 0.02-0.03 μm and a length of 0.1-0.3μm are formed by reaction of C with Al, and uniformly distributed in the Al matrix.The interface between Al_4C_3 and Al is clean and the interfacial bonding is good.The matrix consists of the subgrains which have the size of 0.3-0.4μm, and most of the Al_4C_3 dispersoids are distributed on the subgrain boundaries.The 11 vol.-% Al_4C_3/Al composite exhibits an UTS (ultimate tensile strength) of 400 MPa and an elongation-to-failure of 8.0%. 展开更多
关键词 Al composite Al_4C_3 dispersion strengthening reaction milling MICROSTRUCTURE tensile properties
下载PDF
Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling 被引量:2
5
作者 燕鹏 林晨光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期902-907,共6页
The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-ar... The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the internal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vol%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single γ-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD);the HRB hardness of the ADSC can be as high as 95;the outcomes should be attributed to the pinning effect of nano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for 1 h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc. 展开更多
关键词 oxide dispersion strengthened copper reaction milling HARDNESS electrical conductivity
下载PDF
In situ fabrication and properties of Al N dispersion strengthened 2024 aluminum alloy
6
作者 Wei-wei Yang Zhi-meng Guo +3 位作者 Lei-chen Guo Hui-qin Cao Ji Luo An-ping Ye 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第12期1228-1232,共5页
Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subse... Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subsequently consolidated by sintering and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Transmission electron microscopy and X-ray diffraction results revealed that AlN particles were generated by the nitridation of Al-Mg-Cu compacts. The material exhibited excellent mechanical properties after hot extrusion and heat treatment. The ultimate tensile and yield strengths of the extruded samples containing 8.92vol% AlN with the T6 heat treatment were 675 and 573 MPa, respectively. 展开更多
关键词 dispersion strengthened alloys aluminum alloys aluminum nitride FABRICATION mechanical properties
下载PDF
Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
7
作者 高朋林 龚建 +6 位作者 田强 孙光爱 闫海洋 陈良 白亮飞 郭志猛 巨新 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期484-489,共6页
A 9 Cr-oxide dispersion strengthened(ODS)steel was thermally aged at 873 K for up to 5000 h.The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scat... A 9 Cr-oxide dispersion strengthened(ODS)steel was thermally aged at 873 K for up to 5000 h.The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scattering under a magnetic field.Combined with transmission electron microscopy,Vickers micro-hardness tests and electron backscattered diffraction measurements,all the results showed that the thermal treatment had little or no effect on the size distributions and volume fractions of the oxide nanoparticles in the ferromagnetic matrix,which suggested excellent thermal stability of the 9 Cr-ODS steel. 展开更多
关键词 oxide dispersion strengthened(ODS)steel small angle neutron scattering(SANS) thermal aging NANOPARTICLE
下载PDF
Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy
8
作者 Jianqiang Wang Sheng Liu +3 位作者 Bin Xu Jianyang Zhang Mingyue Sun Dianzhong Li 《International Journal of Extreme Manufacturing》 EI 2021年第3期2-15,共14页
Nuclear energy is a low-carbon,safe,efficient,and sustainable clean energy.The new generation of nuclear energy systems operate in harsher environments under higher working temperatures and irradiation doses,while tra... Nuclear energy is a low-carbon,safe,efficient,and sustainable clean energy.The new generation of nuclear energy systems operate in harsher environments under higher working temperatures and irradiation doses,while traditional nuclear power materials cannot meet the requirements.The development of high-performance nuclear power materials is a key factor for promoting the development of nuclear energy.Oxide dispersion strengthened(ODS)steel contains a high number density of dispersed nano-oxides and defect sinks and exhibits excellent high temperature creep performance and irradiation swelling resistance.Therefore,ODS steel has been considered as one of the most promising candidate materials for fourth-generation nuclear fission reactor cladding tubes and nuclear fusion reactor blankets.The preparation process significantly influences microstructure of ODS steel.This paper reviews the development and perspective of several preparation processes of ODS steel,including the powder metallurgy process,improved powder metallurgy process,liquid metal forming process,hybrid process,and additive forging.This paper also summarizes and analyzes the relationship between microstructures and the preparation process.After comprehensive consideration,the powder metallurgy process is still the best preparation process for ODS steel.Combining the advantages and disadvantages of the above preparation processes,the trend applied additive forging for extreme manufacturing of large ODS steel components is discussed with the goal of providing a reference for the application and development of ODS steel in nuclear energy. 展开更多
关键词 nuclear energy oxide dispersion strengthened steel preparation process powder metallurgy additive forging
下载PDF
Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering
9
作者 Deyin Zhang Xu Hao +4 位作者 Baorui Jia Haoyang Wu Lin Zhang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1748-1755,共8页
How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion stre... How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature,with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y_(2)O_(3)alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y_(2)O_(3)alloy with 15.5 nm Y_(2)O_(3)particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650℃ presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy. 展开更多
关键词 oxide dispersion strengthening spark plasma sintering microstructure and properties strengthening mechanism
下载PDF
Fabrication of an in-situ nanoAl_2O_3/Cu composite with high strength and high electric conductivity 被引量:6
10
作者 SHENYutian ZHUJing +2 位作者 XUYanji WANGBaoheng LITongze 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期46-54,共9页
A heat-resistant dispersion-strengthening nano-Al_2O_3/Cu composite with highstrength and high electric conductivity was fabricated in a multiplex medium. The internaloxidation product, microstructures and properties ... A heat-resistant dispersion-strengthening nano-Al_2O_3/Cu composite with highstrength and high electric conductivity was fabricated in a multiplex medium. The internaloxidation product, microstructures and properties of the composite, and the process flow weresystematically studied. It is confirmed that this new technique simplifies the process and improvesthe properties of the composite. X-ray analysis indicates that the alumina particles formed duringinternal oxidation consist of a large mount of gamma-Al_2O_3 and a certain amount of theta-Al_2O_3and alpha-Al_2O_3. TEM observation shows that the obtained gamma-Al_2O_3 nano-particles areuniformly distributed in the copper grains; their mean size and space between particles are 7 runand 30 nm, respectively. The main properties of the composite with 50 percent cold deformation areas follows: the electric conductivity is 51 MS/m (87 percent IACS), sigma_b = 628 MPa, and thehardness is HRB86. After annealing at 1273 K, all or most of the above properties remain, and themicrostructures are still dependent on elongated fiber-form grains. 展开更多
关键词 Al_2O_3/Cu composite internal oxidation dispersion strengthening microstructure PROPERTY
下载PDF
Nanocrystallization of Al_(80) Ni_6Y_8Co_4Cu_2 amorphous alloy
11
作者 边赞 孙玉峰 +1 位作者 何国 陈国良 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期254-257,共4页
Nanoscale α (Al) phase with a size of 15 nm was precipitated from Al 80 Ni 6Y 8Co 4Cu 2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale ... Nanoscale α (Al) phase with a size of 15 nm was precipitated from Al 80 Ni 6Y 8Co 4Cu 2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale α (Al) phase. The combination effect of alloy strengthening and dispersion strengthening is main reason for the increase of microhardness. The formation of intermetallic compound (Al 3Ni) with a small volume fraction leads to the decrease of microhardness resulting from the depletion of the solute elements in the residual amorphous matrix and the weakening of alloy strengthening. With increasing the volume fraction of intermetallic compound, microhardness increases again due to dispersion strengthening of nanoscale intermetallic compound. [ 展开更多
关键词 nanoscale α (Al) particle alloy strengthening dispersion strengthening MICROHARDNESS
下载PDF
Effects of dispersoid preforming via multistep sintering of oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy
12
作者 SeungHyeok Chung Ji Ho Shin Ho Jin Ryu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期187-200,共14页
Dispersoid formation and microstructural evolution in an oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy(HEA)using a newly designed multistep sintering process are investigated.The proposed multistep sinte... Dispersoid formation and microstructural evolution in an oxide dispersion-strengthened CoCrFeMnNi high-entropy alloy(HEA)using a newly designed multistep sintering process are investigated.The proposed multistep sintering consists of a dispersoid preforming heat treatment of as-milled 0.1 wt%Y_(2)O_(3)-CoCrFeMnNi high-entropy alloy powders at 800℃,followed by sintering at 800–1000℃ under uniaxial pressure.In the conventional single-step sintered bulk,the coarsened BCC Y_(2)O_(3)dispersoids mainly form with an incoherent interface with the HEA matrix.In contrast,finer FCC Y_(2)O_(3)dispersoids,an atypical form of Y_(2)O_(3),are formed in the matrix region after multistep sintering.Nucleation of FCC Y_(2)O_(3)disper-soids is initiated on the favorable facet,the{111}plane of the austenitic matrix,with the formation of a semi-coherent interface with the matrix during the dispersoid preforming heat treatment and it maintains its refined size even after sintering.It is found that dispersoid preforming prior to sintering appears promising to control the finer dispersoid formation and refined grain structure. 展开更多
关键词 Oxide dispersion strengthening High-Entropy alloy Multistep sintering Dispersoid preforming Microstructure evolution Interfacial structure
原文传递
Distribution,evolution and the effects of rare earths Ce and Y on the mechanical properties of ZK60 alloys 被引量:5
13
作者 Anru Wu Changqing Xia Jiewen Wang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期424-428,共5页
Eight kinds of Mg-RE alloys were prepared. The distribution, evolution, and effects of RE Ce and Y in the investigated alloys were studied by examining the mechanical properties of Mg alloys using X-ray diffraction an... Eight kinds of Mg-RE alloys were prepared. The distribution, evolution, and effects of RE Ce and Y in the investigated alloys were studied by examining the mechanical properties of Mg alloys using X-ray diffraction and scan electron analysis, and by TEM observation. The results show that among the investigated alloys, ZK60-1.5%Ce and ZK60-1.0%Y possessed the optimal mechanical properties. Ce and Y were distributed on the grain boundary during casting. After extrusion and T5 (150℃/0-24 h) heattreatment, Ce and Y were distributed along the extrusion direction and they existed in compound form for both as-casting and asextrusion specimens. The mechanical properties of the investigated alloys were better than those of ZK60 because of the solid solution strengthening of RE and the dispersion strengthening of Mg-RE or Mg-Zn-RE compounds. 展开更多
关键词 Mg-RE alloy EXTRUSION solid solution strengthen dispersion strengthen
下载PDF
Stress-rupture measurements of cast magnesium strengthened by in-situ production of ceramic particles 被引量:2
14
作者 Nagaraj M.Chelliah Sudarshan +3 位作者 Lisa Kraemer Harpreet Singh M.K.Surappa Rishi Raj 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第2期225-230,共6页
We have introduced a polymer precursor into molten magnesium and then in-situ pyrolyzed to produce castings of metal matrix composites(P-MMCs)containing silicon-carbonitride(SiCNO)ceramic particles.Stress-rupture meas... We have introduced a polymer precursor into molten magnesium and then in-situ pyrolyzed to produce castings of metal matrix composites(P-MMCs)containing silicon-carbonitride(SiCNO)ceramic particles.Stress-rupture measurements of as-cast P-MMCs was performed at 350 ℃(0.69TM)to 450 ℃(0.78TM)under dead load condition corresponding to tensile stress of 2.5 MPa to 20 MPa.The time-to-fracture data were analyzed using the classical Monkman–Grant equation.The time-to-fracture is thermally activated and follows a power-law stress exponent exhibiting dislocation creep.Fractography analysis revealed that while pure magnesium appears to fracture by dislocation slip,the P-MMCs fail from the nucleation and growth of voids at the grain boundaries. 展开更多
关键词 STRESS-RUPTURE Polymer derived ceramics MAGNESIUM dispersion strengthened alloys High temperature Light-weight materials
下载PDF
Densification and properties of ODS-iron based alloy 被引量:2
15
作者 Guo, Zhimeng Liu, Qing +1 位作者 Yang, Weiwei Guo, Leichen 《Rare Metals》 SCIE EI CAS CSCD 2012年第4期339-342,共4页
关键词 oxide dispersion strengthened(ODS) hydrothermal synthesis spark plasma sintering(SPS) mechanical properties
下载PDF
Relationship of the Yttrium Compounds with the Alloying Method in ODS Ferritic Stainless Steel 被引量:1
16
作者 张勇 陈明彪 吴承建 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第4期305-307,共3页
The relationship of the yttrium compounds with its alloying method has been studied, the alloying methods studied including MA and CA (Mechanical Alloying and Chemical Alloying). The results show that the compound in ... The relationship of the yttrium compounds with its alloying method has been studied, the alloying methods studied including MA and CA (Mechanical Alloying and Chemical Alloying). The results show that the compound in CA steel is Y2Ti2O7 but that in MA steel is Y2O3. The statistical analysis confirms that the titanium contents in the two compounds are different apparently. However, the yttrium content maintains constant. 展开更多
关键词 Y_2O_3 Mechanical alloying Chemical alloying Oxides dispersion strengthened
下载PDF
NICKEL-BASE ALLOY SHEET ALLOYS USED IN AEROSPACE APPLICATIONS 被引量:1
17
作者 J.H. Tundermann(Inco Alloys International,Inc.,Huntington,WV 25705,USA ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期423-432,共10页
Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These a... Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties. 展开更多
关键词 aerospace sheet products nickel-base alloys INCONEL alloy 625LCF INCONEL alloy 718SPF INCONEL alloy MA754 low cycle fatigue superplastic forming oxide dispersion strengthened
下载PDF
Current state and prospect on the development of advanced nuclear fuel system materials:A review
18
作者 Di Yun Chenyang Lu +5 位作者 Zhangjian Zhou Yingwei Wu Wenbo Liu Shaoqiang Guo Tan Shi James F.Stubbins 《Materials Reports(Energy)》 2021年第1期69-87,共19页
The intricate balance between reactor economics and safety necessitates the emergence of new and advanced nuclear systems and,very importantly,advanced materials,which can overcome current shortcomings and bring about... The intricate balance between reactor economics and safety necessitates the emergence of new and advanced nuclear systems and,very importantly,advanced materials,which can overcome current shortcomings and bring about more economic nuclear systems with designed-in inherent safety features.These advances will achieve greater safety and better nuclear reactor economics by reaching longer reactor lives with higher levels neutron irradiation,and by providing higher operation temperatures and resistance to more aggressive corrosive environments.This paper provides a review of the current state of research and development on innovative nuclear fuel materials design and development which have the potential of benefiting simultaneously reactor economics and safety.Our discussion focuses on three areas of research:Accident-tolerant Fuels(ATFs),Oxidation Dispersion Strengthened(ODS)steels and High Entropy Alloys(HEAs).The paper also gives a prospective description of future research activities on these materials. 展开更多
关键词 Nuclear fuel materials Nuclear cladding materials Accident-tolerant fuel(ATF) Oxidation dispersion strengthened(ODS)steel High entropy alloy(HEA)
下载PDF
The thermal stability of dispersion-strengthened tungsten as plasma-facing materials:a short review 被引量:5
19
作者 Tao Zhang Zhuoming Xie +2 位作者 Junfeng Yang Ting Hao Changsong Liu 《Tungsten》 2019年第3期187-197,共11页
One key challenge for the development of fusion energy is plasma-facing materials.Tungsten-based materials are promising candidates for plasma-facing components(PFCs)in the magnetic confinement nuclear fusion reactors... One key challenge for the development of fusion energy is plasma-facing materials.Tungsten-based materials are promising candidates for plasma-facing components(PFCs)in the magnetic confinement nuclear fusion reactors because of their high melt temperature,high-thermal conductivity,high-thermal load resistance,low tritium retention,and low sputtering yield.In fusion reactors,PFCs are exposed to high-thermal flux,because there are some transient events such as plasma disruptions,edge-localized modes,and vertical displacement events(VDEs).Especially,in VDEs,a heat flux of 10-100 MW m−2 with duration of milliseconds-to-several seconds can induce recrystallization and then change the microstructure of tungsten-based plasma-facing materials,leading to instability of microstructures.Then,a significant degradation of material properties is caused such as a reduction of mechanical strength and fracture toughness,a rise in the ductile-to-brittle-transition tempera-ture well,and decrease of irradiation/high-thermal load resistance.Therefore,many efforts were devoted to improve the thermal stability of tungsten-based materials as high as possible,such as oxide dispersion strengthening,carbide dispersion strengthening,and K bubbles dispersion strengthening.Here,the thermal stabilities of various dispersion-strengthened tungsten materials are reviewed by evaluating their recrystallization temperature and the corresponding hardness evolutions.In addition,the possible development trends are proposed. 展开更多
关键词 TUNGSTEN Plasma-facing materials Thermal stability dispersion strengthening
原文传递
Development of oxide dispersion strengthened ferritic steels with and without aluminum 被引量:4
20
作者 Jae Hoon LEE 《Frontiers in Energy》 CSCD 2012年第1期29-34,共6页
Pure Fe, Cr, AI, Ti elemental powders and prealloyed Y203 powder were processed by high energy mechanical milling. The compositions of the mixed powders are designed as Fe-18Cr-0.2Ti-0.35Y2O3 and Fe-18Cr-5Al-0.2Ti-0.3... Pure Fe, Cr, AI, Ti elemental powders and prealloyed Y203 powder were processed by high energy mechanical milling. The compositions of the mixed powders are designed as Fe-18Cr-0.2Ti-0.35Y2O3 and Fe-18Cr-5Al-0.2Ti-0.35Y2O3 in weight percent. The asmilled powders were consolidated by hot extrusion at 1423 K. The dispersed oxide particles were identified to be titania + yttria for Al-free oxide dispersion strengthened (ODS) steel and alumina + yttria for Al-added ODS steel, respectively. The ultimate tensile strength of Al-free ODS steel was higher than that of Al-added ODS steel over the temperature range of 298-973 K, because of the difference in number density and size of thermally stable oxide particles dispersed in both steel matrices. The strength in the longitudinal direction was lower than that in the transverse direction, probably due to anisotropy of the microstructure with elongated grains in the hot-extrusion direction for the 18%Cr-ODS steels with and without 5% Al. 展开更多
关键词 oxide dispersion strengthened (ODS) steel milling EXTRUSION ALUMINUM YTTRIA
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部