A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a...A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.展开更多
Displacement is vital in the evaluations of tunnel excavation processes,as well as in determining the postexcavation stability of surrounding rock masses.The prediction of tunnel displacement is a complex problem beca...Displacement is vital in the evaluations of tunnel excavation processes,as well as in determining the postexcavation stability of surrounding rock masses.The prediction of tunnel displacement is a complex problem because of the uncertainties of rock mass properties.Meanwhile,the variation and the correlation relationship of geotechnical material properties have been gradually recognized by researchers in recent years.In this paper,a novel probabilistic method is proposed to estimate the uncertainties of rock mass properties and tunnel displacement,which integrated multivariate distribution function and a relevance vector machine(RVM).The multivariate distribution function is used to establish the probability model of related random variables.RVM is coupled with the numerical simulation methods to construct the nonlinear relationship between tunnel displacements and rock mass parameters,which avoided a large number of numerical simulations.Also,the residual rock mass parameters are taken into account to reflect the brittleness of deeply buried rock mass.Then,based on the proposed method,the uncertainty of displacement in a deep tunnel of CJPL-II laboratory are analyzed and compared with the in-situ measurements.It is found that the predicted tunnel displacements by the RVM model closely match with the measured ones.The correlations of parameters have significant impacts on the uncertainty results.The uncertainty of tunnel displacement decreases while the reliability of the tunnel increases with the increases of the negative correlations among rock mass parameters.When compared to the deterministic method,the proposed approach is more rational and scientific,and also conformed to rock engineering practices.展开更多
A new method for predicting the trend of displacement evolution of surroundingrock was presented in this paper.According to the nonlinear characteristics of displace-ment time series of underground engineering surroun...A new method for predicting the trend of displacement evolution of surroundingrock was presented in this paper.According to the nonlinear characteristics of displace-ment time series of underground engineering surrounding rock,based on phase spacereconstruction theory and the powerful nonlinear mapping ability of support vector ma-chines,the information offered by the time series datum sets was fully exploited and thenon-linearity of the displacement evolution system of surrounding rock was well described.The example suggests that the methods based on phase space reconstruction and modi-fied v-SVR algorithm are very accurate,and the study can help to build the displacementforecast system to analyze the stability of underground engineering surrounding rock.展开更多
基金Project(50925727) supported by the National Fund for Distinguish Young Scholars of ChinaProject(60876022) supported by the National Natural Science Foundation of China+1 种基金Project(2010FJ4141) supported by Hunan Provincial Science and Technology Foundation,ChinaProject supported by the Fund of the Key Construction Academic Subject (Optics) of Hunan Province,China
文摘A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.
基金by the National Natural Science Foundation of China(Grant Nos.U1765206,51621006 and 41877256)Innovation Research Group Project of Natural Science Foundation of Hubei Province(ZRQT2020000114).
文摘Displacement is vital in the evaluations of tunnel excavation processes,as well as in determining the postexcavation stability of surrounding rock masses.The prediction of tunnel displacement is a complex problem because of the uncertainties of rock mass properties.Meanwhile,the variation and the correlation relationship of geotechnical material properties have been gradually recognized by researchers in recent years.In this paper,a novel probabilistic method is proposed to estimate the uncertainties of rock mass properties and tunnel displacement,which integrated multivariate distribution function and a relevance vector machine(RVM).The multivariate distribution function is used to establish the probability model of related random variables.RVM is coupled with the numerical simulation methods to construct the nonlinear relationship between tunnel displacements and rock mass parameters,which avoided a large number of numerical simulations.Also,the residual rock mass parameters are taken into account to reflect the brittleness of deeply buried rock mass.Then,based on the proposed method,the uncertainty of displacement in a deep tunnel of CJPL-II laboratory are analyzed and compared with the in-situ measurements.It is found that the predicted tunnel displacements by the RVM model closely match with the measured ones.The correlations of parameters have significant impacts on the uncertainty results.The uncertainty of tunnel displacement decreases while the reliability of the tunnel increases with the increases of the negative correlations among rock mass parameters.When compared to the deterministic method,the proposed approach is more rational and scientific,and also conformed to rock engineering practices.
文摘A new method for predicting the trend of displacement evolution of surroundingrock was presented in this paper.According to the nonlinear characteristics of displace-ment time series of underground engineering surrounding rock,based on phase spacereconstruction theory and the powerful nonlinear mapping ability of support vector ma-chines,the information offered by the time series datum sets was fully exploited and thenon-linearity of the displacement evolution system of surrounding rock was well described.The example suggests that the methods based on phase space reconstruction and modi-fied v-SVR algorithm are very accurate,and the study can help to build the displacementforecast system to analyze the stability of underground engineering surrounding rock.