A proposed computer model for predicting aerosol particle dispersion in indoor spaces was validated with experimental data found in the literature, and is then used to study the effect of the area and point source loc...A proposed computer model for predicting aerosol particle dispersion in indoor spaces was validated with experimental data found in the literature, and is then used to study the effect of the area and point source locations on particle dispersion in displacement ventilation (DV) rooms. The results show that aerosol source location has a strong impact on the spatial distribution and removal rate of indoor particles. Particle removal performance depends strongly on ventilation efficiency and particle deposition rate on indoor surfaces. Important consideration for both relative ventilation efficiency and deposition rate consists of the position of the aerosol source relative to the main airflow pattern and the occupied zone.展开更多
The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. T...The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.展开更多
In order to obtain a better understanding of flow characteristics of displacement ventilation, the three-dimensional numerical models are developed using the CFD technology. The numerical simulation results are verifi...In order to obtain a better understanding of flow characteristics of displacement ventilation, the three-dimensional numerical models are developed using the CFD technology. The numerical simulation results are verified by experiments, based on this, the velocity and temperature distribution of three-dimensional displacement ventilation system with single and double heat sources are studied. Velocity and temperature fields under two different cases of heat source are analyzed and compared. The numerical results show that there are three layers in vertical temperature fields of displacement ventilation system with single or double heat sources, and the vertical temperature distribution of single heat source is different from that of double heat sources. When indoor load is large, the comfort requirement of people indoor can't be satisfied with displacement ventilation system only, thus an additional refrigeration system is necessary. Furthermore, under the condition of two heat sources, the displacement ventilation parameters can't be computed simply according to single heat source inlet parameters, therefore the interaction between heat sources should be considered.展开更多
This paper studies the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0 to 10.0 μm in an office room with three air distribution methods,includ...This paper studies the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0 to 10.0 μm in an office room with three air distribution methods,including mixing ventilation(MV),displacement ventilation(DV),and under-floor air distribution(UFAD).The simulation results indicate that exhaled droplets with diameters up to 10.0 μm from normal respiration process are uniformly distributed in MV.However,they become trapped at the breathing height by thermal stratifications in DV and UFAD,resulting in a high droplet concentration and an increased exposure risk to other occupants.Sneezed/coughed droplets are more slowly diluted in DV/UFAD than in MV.Low air speed in the breathing zone in DV/UFAD can lead to prolonged human exposure to droplets in the breathing zone.展开更多
This study experimentally studied the dispersion of exhaled pollutant in the breathing microenvironment(BM)in a room equipped with a displacement ventilation(DV)system and indoor air stability conditions(i.e.,stable a...This study experimentally studied the dispersion of exhaled pollutant in the breathing microenvironment(BM)in a room equipped with a displacement ventilation(DV)system and indoor air stability conditions(i.e.,stable and unstable conditions).The vertical temperature differences and the carbon dioxide(CO_(2))concentration in the BM were measured.Results show that when DV is combined with the stable condition(DS),pollutant tends to accumulate in the BM,leading to a high pollutant concentration in this region.Whereas,when DV is combined with the unstable condition(DU),pollutant diffuses to a relatively wider area beyond the BM,thus the pollutant concentration in the BM is substantially reduced.Moreover,increasing the flow rate can reduce the pollutant concentration in the BM of the DS but yields little difference of the DU.In addition,personal exposure intensity increases with time,and the DS has a relatively higher increase rate than DU.The results suggest that indoor air stability will affect the performance of DV systems.DS will lead to a higher health risk for people when they stay in the indoor environment with pollutant sources,and DU is recommended for minimizing pollutant level in the BM in order to reduce the pollutant concentration and providing better air environments for the occupants.展开更多
A temperature-based method is usually applied in displacement ventilation (DV) design when overheating is the primary indoor climate concern. Different steady-state models have been developed and implemented to calcul...A temperature-based method is usually applied in displacement ventilation (DV) design when overheating is the primary indoor climate concern. Different steady-state models have been developed and implemented to calculate airflow rate in rooms with DV. However, in practical applications, the performance of DV depends on potentially dynamic parameters, such as strength, type and location of heat gains and changing heat gain schedule. In addition, thermal mass affects dynamically changing room air temperature. The selected steady-state and dynamic models were validated with the experimental results of a lecture room and an orchestra rehearsal room. Among the presented models, dynamic DV model demonstrated a capability to take into account the combination of dynamic parameters in typical applications of DV. The design airflow rate is calculated for the case studies of dynamic DV design in the modelled lecture room in both dynamic and steady-state conditions. In dynamic conditions of heavy construction in 2–4 hours occupancy periods, the actual airflow rate required could be 50% lower than the airflow rate calculated with the steady-state models. The difference between steady-state and dynamic multi-nodal model is most significant with heavyweight construction and short occupancy period (17%–28%). In cases with light construction, the dynamic DV model provides roughly the same airflow rates for four-hour occupancy period than the Mund’s model calculates. The dynamic model can significantly decrease the design airflow rate of DV, which can result in a reduction of investment costs and electrical consumption of fans.展开更多
基金the National Natural Science Foundation of China(Grant No.50578034)Shanghai Educational Development Foundation,titled"Shuguang Project",PR.China(Grant No.03SG30).
文摘A proposed computer model for predicting aerosol particle dispersion in indoor spaces was validated with experimental data found in the literature, and is then used to study the effect of the area and point source locations on particle dispersion in displacement ventilation (DV) rooms. The results show that aerosol source location has a strong impact on the spatial distribution and removal rate of indoor particles. Particle removal performance depends strongly on ventilation efficiency and particle deposition rate on indoor surfaces. Important consideration for both relative ventilation efficiency and deposition rate consists of the position of the aerosol source relative to the main airflow pattern and the occupied zone.
基金supported by the National Natural Science Foundation of China (Grant No. 40975093)Shanghai Educational Development Foundation titled "Shuguang Project", P.R. China(Grant No. 03SG30)
文摘The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.
文摘In order to obtain a better understanding of flow characteristics of displacement ventilation, the three-dimensional numerical models are developed using the CFD technology. The numerical simulation results are verified by experiments, based on this, the velocity and temperature distribution of three-dimensional displacement ventilation system with single and double heat sources are studied. Velocity and temperature fields under two different cases of heat source are analyzed and compared. The numerical results show that there are three layers in vertical temperature fields of displacement ventilation system with single or double heat sources, and the vertical temperature distribution of single heat source is different from that of double heat sources. When indoor load is large, the comfort requirement of people indoor can't be satisfied with displacement ventilation system only, thus an additional refrigeration system is necessary. Furthermore, under the condition of two heat sources, the displacement ventilation parameters can't be computed simply according to single heat source inlet parameters, therefore the interaction between heat sources should be considered.
基金The National Natural Science Foundation of China(No.50808133)the Dean's Reserve of Faculty of Construction and Land Use at the Hong Kong Polytechnic University
文摘This paper studies the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0 to 10.0 μm in an office room with three air distribution methods,including mixing ventilation(MV),displacement ventilation(DV),and under-floor air distribution(UFAD).The simulation results indicate that exhaled droplets with diameters up to 10.0 μm from normal respiration process are uniformly distributed in MV.However,they become trapped at the breathing height by thermal stratifications in DV and UFAD,resulting in a high droplet concentration and an increased exposure risk to other occupants.Sneezed/coughed droplets are more slowly diluted in DV/UFAD than in MV.Low air speed in the breathing zone in DV/UFAD can lead to prolonged human exposure to droplets in the breathing zone.
基金the National Natural Science Foundation of China(No.51378186)the National Science&Technology Supporting Program(No.2015BAJ03B00)the China Scholarship Council for financial support at the University of Cambridge(No.201806130150)。
文摘This study experimentally studied the dispersion of exhaled pollutant in the breathing microenvironment(BM)in a room equipped with a displacement ventilation(DV)system and indoor air stability conditions(i.e.,stable and unstable conditions).The vertical temperature differences and the carbon dioxide(CO_(2))concentration in the BM were measured.Results show that when DV is combined with the stable condition(DS),pollutant tends to accumulate in the BM,leading to a high pollutant concentration in this region.Whereas,when DV is combined with the unstable condition(DU),pollutant diffuses to a relatively wider area beyond the BM,thus the pollutant concentration in the BM is substantially reduced.Moreover,increasing the flow rate can reduce the pollutant concentration in the BM of the DS but yields little difference of the DU.In addition,personal exposure intensity increases with time,and the DS has a relatively higher increase rate than DU.The results suggest that indoor air stability will affect the performance of DV systems.DS will lead to a higher health risk for people when they stay in the indoor environment with pollutant sources,and DU is recommended for minimizing pollutant level in the BM in order to reduce the pollutant concentration and providing better air environments for the occupants.
文摘A temperature-based method is usually applied in displacement ventilation (DV) design when overheating is the primary indoor climate concern. Different steady-state models have been developed and implemented to calculate airflow rate in rooms with DV. However, in practical applications, the performance of DV depends on potentially dynamic parameters, such as strength, type and location of heat gains and changing heat gain schedule. In addition, thermal mass affects dynamically changing room air temperature. The selected steady-state and dynamic models were validated with the experimental results of a lecture room and an orchestra rehearsal room. Among the presented models, dynamic DV model demonstrated a capability to take into account the combination of dynamic parameters in typical applications of DV. The design airflow rate is calculated for the case studies of dynamic DV design in the modelled lecture room in both dynamic and steady-state conditions. In dynamic conditions of heavy construction in 2–4 hours occupancy periods, the actual airflow rate required could be 50% lower than the airflow rate calculated with the steady-state models. The difference between steady-state and dynamic multi-nodal model is most significant with heavyweight construction and short occupancy period (17%–28%). In cases with light construction, the dynamic DV model provides roughly the same airflow rates for four-hour occupancy period than the Mund’s model calculates. The dynamic model can significantly decrease the design airflow rate of DV, which can result in a reduction of investment costs and electrical consumption of fans.