Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem ...Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem of recognizing multiclass digital display instruments.We developed a multiclass digital display instrument recognition algorithm by combining the character recognition network constructed using a convolutional neural network and bidirectional variable-length long short-term memory(LSTM).First,the digital display region detection CTPNpro network framework was designed based on the CTPN network architecture by introducing feature fusion and residual structure.Next,the digital display instrument identification network was constructed based on a convolutional neural network using twoway LSTM and Connectionist temporal classification(CTC)of indefinite length.Finally,an automatic calibration system for digital display instruments was built,and a multiclass digital display instrument dataset was constructed by sampling in the system.We compared the performance of the CTPNpro algorithm with other methods using this dataset to validate the effectiveness and robustness of the proposed algorithm.展开更多
基金supported by the National Key R&D Program of China(2022YFB4701502)the“Leading Goose”R&D Program of Zhejiang(2023C01177)+1 种基金the Key Research Project of Zhejiang Lab(2021NB0AL03)the Key R&D Project on Agriculture and Social Development in Hangzhou City(Asian Games)(20230701 A05).
文摘Digital display instrument identification is a crucial approach for automating the collection of digital display data.In this study,we propose a digital display area detection CTPNpro algorithm to address the problem of recognizing multiclass digital display instruments.We developed a multiclass digital display instrument recognition algorithm by combining the character recognition network constructed using a convolutional neural network and bidirectional variable-length long short-term memory(LSTM).First,the digital display region detection CTPNpro network framework was designed based on the CTPN network architecture by introducing feature fusion and residual structure.Next,the digital display instrument identification network was constructed based on a convolutional neural network using twoway LSTM and Connectionist temporal classification(CTC)of indefinite length.Finally,an automatic calibration system for digital display instruments was built,and a multiclass digital display instrument dataset was constructed by sampling in the system.We compared the performance of the CTPNpro algorithm with other methods using this dataset to validate the effectiveness and robustness of the proposed algorithm.