期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
1
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion Skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
下载PDF
Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar 被引量:1
2
作者 Luwen ZHOU Yuqian ZHANG +1 位作者 Xiaolong DENG Moubin LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1431-1440,共10页
Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pi... Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array. 展开更多
关键词 array of micropillar PERMEABILITY dissipative particle dynamics (DPD)
下载PDF
Impingement and mixing dynamics of micro-droplets on a solid surface
3
作者 Guina Yi Ziqi Cai +1 位作者 Zhengming Gao J.J.Derksen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第12期66-77,共12页
The hydrodynamics and mixing during the nonaxisymmetry impingement of a micro-droplet and a sessile droplet of the same fluid are investigated by many-body dissipative particle dynamics(MDPD) simulation.In this work,t... The hydrodynamics and mixing during the nonaxisymmetry impingement of a micro-droplet and a sessile droplet of the same fluid are investigated by many-body dissipative particle dynamics(MDPD) simulation.In this work,the range of the impingement angle(θ_(i)) between the impinging droplet and the sessile droplet is 0°-60° and the contact angle is set as 45° or 124°.The droplets impingement and mixing behavior is analyzed based on the droplet internal flow field,the concentration distribution and the time scale of the decay of the kinetic energy of the impinging droplet.The dimensionless total mixing time(τ_(m)) is calculated by a modified mixing function.With the Weber number(We) ranging from 5.65 to22.7 and the Ohnesorge number(Oh) ranging from 0.136 to 0.214,we find rm hardly changes with We and Oh.Whereas,θ_(i)and surface wettability are found to have a significant effect on τ_(m).We find that θ_(i)has no clear effect on τ_(m)on a hydrophobic surface,while on the hydrophilic surface,τ_(m)increase with the θ_(i).Thus,reducing the impinging angle is a valid method to shorten the τ_(m). 展开更多
关键词 Droplets impingement Mixing behavior Mixing time Concentration distribution Many-body dissipative particle dynamics
下载PDF
Effect of shear on the symmetric diblock copolymer/nanorod mixture:A dissipative particle dynamics study
4
作者 何林李 张瑞芬 季永运 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期549-559,共11页
The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods ea... The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules. 展开更多
关键词 dissipative particle dynamics SHEAR NANOCOMPOSITES ORIENTATION
下载PDF
A note on hydrodynamics from dissipative particle dynamics
5
作者 X. BIAN Z. LI N.A. ADAMS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期63-82,共20页
We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particul... We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics. 展开更多
关键词 dissipative particle dynamics (DPD) fluctuating hydrodynamics molec-ular dynamics (MD) COARSE-GRAINING Mori-Zwanzig projection
下载PDF
A new model for dissipative particle dynamics boundary condition of walls with different wettabilities
6
作者 Yuyi WANG Jiangwei SHE Zhewei ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期467-484,共18页
The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density dis... The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems. 展开更多
关键词 dissipative particle dynamics(DPD) molecular dynamics(MD) wall-fluid interaction image particle WETTABILITY
下载PDF
Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice
7
作者 周政 钟宏华 +3 位作者 朱博 肖发新 朱科 谭金桃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期13-17,共5页
We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one- dimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a wea... We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one- dimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice. It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice. The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter, and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes. 展开更多
关键词 of on IT in Collision dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice that IS
下载PDF
Polymer translocation through nanopore under external electric field:dissipative particle dynamics study
8
作者 Jinglin MAO Yi YAO +1 位作者 Zhewei ZHOU Guohui HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1581-1592,共12页
The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast ... The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynam- ics (DPD), in which the homopolymer is modeled as a worm-like chain (WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current block- ades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers (CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing tech- nique. 展开更多
关键词 nanopore sequencing technology electric-driven translocation dissipative particle dynamics (DPD)
下载PDF
Discussions on the correspondence of dissipative particle dynamics and Langevin dynamics at small scales
9
作者 D. AZARNYKH S. LITVINOV +1 位作者 X. BIAN N.A. ADAMS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期31-46,共16页
We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, ... We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters. 展开更多
关键词 dissipative particle dynamics (DPD) mesoscopic dynamics fluctuating hydrodynamics
下载PDF
Many-body dissipative particle dynamics with energy conservation:temperature-dependent long-term attractive interaction
10
作者 Jie LI Kaixuan ZHANG +3 位作者 Chensen LIN Lanlan XIAO Yang LIU Shuo CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第4期497-506,共10页
Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and c... Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer. 展开更多
关键词 surface tension Young’s equation equilibrium contact angle many-body dissipative particle dynamics with energy conservation(MDPDE)
下载PDF
Temperature dependence of microscopic properties in diblock copolymer films:A dissipative particle dynamics simulation
11
作者 徐毅 冯剑 +3 位作者 宋小瑜 王勇 陈捷 朱宪 《Journal of Shanghai University(English Edition)》 CAS 2010年第4期255-261,共7页
Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and sy... Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and system temperature can be described as a quadratic curve. The root-mean-square radius of gyration (RMSGR) and end-end distance (RMSED) increase gradually as the temperature rises and composition fraction changes from 0.1 to 0.5, in which the effect of the former is primary. Especially, the relation between RMSGR and temperature is nearly linear in the confinement-introduced direction. Density distribution of each component in the films can be controlled and adjusted effectively by its interaction with other components and boundaries. Moreover, the changes of system temperature and composition fraction can both affect the density distributions to a certain extent. 展开更多
关键词 diblock copolymer films microscopic properties dissipative particle dynamics
下载PDF
Stable and accurate schemes for smoothed dissipative particle dynamics
12
作者 G. FAURE G. STOLTZ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期83-102,共20页
Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still s... Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability. 展开更多
关键词 smoothed dissipative particle dynamics (SDPD) numerical integration Metropolis algorithm
下载PDF
Numerical simulation of pore-scale flow in chemical flooding process 被引量:3
13
作者 Xiaobo Li,~(1,a) Shuhong Wu,~1 Jie Song,~1 Hua Li,~1 and Shuping Wang~2 1.Research Institute of Petroleum Exploration & Development of Petrochina,Beijing 100083,China 2)Petroleum Exploration & Production Research Institute of Sinopec,Beijing 100083,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第2期68-72,共5页
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and nume... Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery. 展开更多
关键词 chemical flooding pore-scale flow dissipative particle dynamics mesoscopic simulation enhanced oil recovery
下载PDF
Generalized Mean-Flow Theory of Wave-Current-BottomInteractions 被引量:1
14
作者 黄虎 《China Ocean Engineering》 SCIE EI 2006年第1期165-172,共8页
The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be ... The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application. 展开更多
关键词 mean-flow equations wave action large-scale slowly varying currents wave-current-bottom interactions dissipative dynamical system
下载PDF
Mesoscale modeling of microgel mechanics and kinetics through the swelling transition 被引量:1
15
作者 S.NIKOLOV A.FERNANDEZ-NIEVES A.ALEXEEV 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期47-62,共16页
The mechanics and swelling kinetics of polymeric microgels are simulated using a mesoscale computational model based on dissipative particle dynamics. Microgels are represented by a random elastic network submerged in... The mechanics and swelling kinetics of polymeric microgels are simulated using a mesoscale computational model based on dissipative particle dynamics. Microgels are represented by a random elastic network submerged in an explicit viscous solvent. The model is used to probe the effect of different solvent conditions on the bulk modulus of the microgels. Comparison of the simulation results through the volume phase transition reveals favorable agreement with Flory-Rehner's theory for polymeric gels. The model is also used to examine the microgel swelling kinetics, and is found to be in good agreement with Tanaka's theory for spherical gels. The simulations show that, during the swelling process, the microgel maintains a nearly homogeneous structure, whereas deswelling is characterized by the formation of chain bundles and network coarsening. 展开更多
关键词 soft matter dissipative particle dynamics MICROMECHANICS HYDROGELS
下载PDF
MesoDyn Simulation Study on Phase Diagram of Aerosol OT/isooctane/water System 被引量:1
16
作者 Shi Ling YUAN Gui Ying XU Zheng Ting CAI 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第10期1025-1028,共4页
A simple model, i.e. sodium di(2-ethylhexyl) sulfosuccinate (AOT) represented by one-head and two-tail beads tied together by a harmonic spring and water or isooctane by one bead, was put forward via Dissipative Parti... A simple model, i.e. sodium di(2-ethylhexyl) sulfosuccinate (AOT) represented by one-head and two-tail beads tied together by a harmonic spring and water or isooctane by one bead, was put forward via Dissipative Particles Dynamics (DPD) simulation method. Using the changes of interfacial tension between water and oil phase, a ternary phase diagram of AOT/water/isooctane system was drawn. From the simulation, one conclusion is shown that DPD simulation can be considered as an adjunct to experiments. 展开更多
关键词 dissipative particles dynamics interfacial tension phase diagram mesodyn simulation
下载PDF
Entangling two oscillating mirrors in an optomechanical system via a flying atom 被引量:1
17
作者 张玉宝 刘军浩 +1 位作者 於亚飞 张智明 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期357-361,共5页
We propose a novel scheme for generating the entanglement of two oscillating mirrors in an optomechanical system via a flying atom. In this scheme, a two-level atom, in an arbitrary superposition state, passes through... We propose a novel scheme for generating the entanglement of two oscillating mirrors in an optomechanical system via a flying atom. In this scheme, a two-level atom, in an arbitrary superposition state, passes through an optomechanical system with two oscillating cavity-mirrors, and then its states are detected. In this way, we can generate the entangled states of the two oscillating mirrors. We derive the analytical expressions of the entangled states and make numerical calculations. We find that the entanglement of the two oscillating mirrors can be controlled by the initial state of the atom, the optomechanical coupling strength, and the coupling strength between the atom and the cavity field. We investigate the dynamics of the system with dissipations and discuss the experimental feasibility. 展开更多
关键词 quantum entanglement optomechanical system dissipative dynamics
下载PDF
Mesoscale Simulation for Polymer Migration in Confined Uniform Shear Flow 被引量:1
18
作者 HE Yan-dong WANG Yong-lei LU Zhong-yuan LI Ze-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第1期122-127,共6页
The structure and dynamics of confined single polymer chain in a dilute solution, either in equilibrium or at different shear rates in the uniform shear flow fields, were investigated by means of dissipative particle ... The structure and dynamics of confined single polymer chain in a dilute solution, either in equilibrium or at different shear rates in the uniform shear flow fields, were investigated by means of dissipative particle dynamics simulations. The no-slip boundary condition without density fluctuation near the wall was taken into account to mimic the environment of a nanochannel. The dependences of the radius of gyration, especially in three different di- rections, and the density profile of the chain mass center on the strength of the confinement and the Weissenberg number(Wn) was studied. The effect of the interaction between polymer and solvent on the density profile was also investigated in the cases of moderate and strong Wn. In the high shear flow, the polymer migrates to the center of the channel with increasing Wn. There is only one density profile peak in the channel center in the uniform shear flow, which is in agreement with the results of the experiments and theory. 展开更多
关键词 Confined polymer Dissipative particle dynamics No-slip boundary condition Uniform shear flow
下载PDF
Everything you always wanted to know about SDPD~★(~★but were afraid to ask) 被引量:1
19
作者 M. ELLERO P. ESPANOL 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期103-124,共22页
An overview of the smoothed dissipative particle dynamics (SDPD) method is presented in a format that tries to quickly answer questions that often arise among users and newcomers. It is hoped that the status of SDPD... An overview of the smoothed dissipative particle dynamics (SDPD) method is presented in a format that tries to quickly answer questions that often arise among users and newcomers. It is hoped that the status of SDPD is clarified as a mesoscopic particle model and its potentials and limitations are highlighted, as compared with other methods. 展开更多
关键词 mesoscopic particle method dissipative particle dynamics (DPD) smoothedparticle hydrodynamics (SPH) complex fluid
下载PDF
ON A SECOND ORDER DISSIPATIVE ODE IN HILBERT SPACE WITH AN INTEGRABLE SOURCE TERM
20
作者 Alain Haraux Mohamed Ali Jendoubi 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期155-163,共9页
Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differe... Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points. 展开更多
关键词 dissipative dynamical system asymptotic behaviour gradient system heavyball with friction
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部