A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov functionals and using some analytic techniques, sufficient conditions are given to ensure the dissipati...A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov functionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.展开更多
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra...Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.展开更多
The analytic and discretized dissipativity of nonlinear infinite-delay systems of the form x'(t) = g(x(t),x(qt))(q∈ (0, 1), t 〉 0) is investigated. A sufficient condition is presented to ensure that the...The analytic and discretized dissipativity of nonlinear infinite-delay systems of the form x'(t) = g(x(t),x(qt))(q∈ (0, 1), t 〉 0) is investigated. A sufficient condition is presented to ensure that the above nonlinear system is dissipative. It is proved the backward Euler method inherits the dissipativity of the underlying system. Numerical examples are given to confirm the theoretical results.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,...The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraic...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.展开更多
This paper deals with analytic and numerical dissipativity and exponential stability of singularly perturbed delay differential equations with any bounded state-independent lag. Sufficient conditions will be presented...This paper deals with analytic and numerical dissipativity and exponential stability of singularly perturbed delay differential equations with any bounded state-independent lag. Sufficient conditions will be presented to ensure that any solution of the singularly perturbed delay differential equations (DDEs) with a bounded lag is dissipative and exponentially stable uniformly for sufficiently small ε > 0. We will study the numerical solution defined by the linear θ-method and one-leg method and show that they are dissipative and exponentially stable uniformly for sufficiently small ε > 0 if and only if θ = 1.展开更多
In this paper, a class of stochastic Lotka Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructi...In this paper, a class of stochastic Lotka Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and Ito formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.展开更多
Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson mod...Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a twophase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.展开更多
Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure...Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.展开更多
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
The Clauser-Horne-Shimony-Holt(CHSH)game provides a captivating illustration of the advantages of quantum strategies over classical ones.In a recent study,a variant of the CHSH game leveraging a single qubit system,re...The Clauser-Horne-Shimony-Holt(CHSH)game provides a captivating illustration of the advantages of quantum strategies over classical ones.In a recent study,a variant of the CHSH game leveraging a single qubit system,referred to as the CHSH^(*)game,has been identified.We demonstrate that this mapping relationship between these two games remains effective even for a non-unitary gate.Here we delve into the breach of Tsirelson’s bound in a non-Hermitian system,predicting changes in the upper and lower bounds of the player’s winning probability when employing quantum strategies in a single dissipative qubit system.We experimentally explore the impact of the CHSH^(*)game on the player’s winning probability in a single trapped-ion dissipative system,demonstrating a violation of Tsirelson’s bound under the influence of parity-time(PT)symmetry.These results contribute to a deeper understanding of the influence of non-Hermitian systems on quantum games and the behavior of quantum systems under PT symmetry,which is crucial for designing more robust and efficient quantum protocols.展开更多
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ...Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.展开更多
Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation ...Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.展开更多
Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(...Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(2D)discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion.It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion,respectively.We numerically observe a directional bulk flow,whose orientations are controlled by dissipative parameters,showing the emergence of the non-Hermitian skin effect.We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca^(+)ion.Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms,such as superconducting circuits and atoms in cavity.展开更多
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g...Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.展开更多
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T...Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.展开更多
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipati...We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipative vector vortices(DVVs)that possess diverse vorticity values.Numerous fundamental characteristics of the DVVs are examined,encompassing amplitude profiles,energy fluxes,parameter effects,as well as linear and dynamic stability.展开更多
基金This work was supported by National Natural Science Foundation of China (No. 60674026)Key Project of Chinese Ministry of Edu- cation (No. 107058)Jiangsu Provincial Natural Science Foundation of China (No. BK2007016)
文摘A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov functionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.
基金Inner Mongolia University 2020 undergraduate teaching reform research and construction project-NDJG2094。
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.
基金financially supported by the Natural Science Foundation of Hunan Province(Grant No.2021JJ40732)the Central South University Innovation-Driven Research Programme(Grant No.2023CXQD012)。
文摘Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.
基金This work is supported by the National Natural Science Foundation of China(Grant No.10571147).
文摘The analytic and discretized dissipativity of nonlinear infinite-delay systems of the form x'(t) = g(x(t),x(qt))(q∈ (0, 1), t 〉 0) is investigated. A sufficient condition is presented to ensure that the above nonlinear system is dissipative. It is proved the backward Euler method inherits the dissipativity of the underlying system. Numerical examples are given to confirm the theoretical results.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金This work has been supported by National Key R&D Program of China No.2022YFF0503804.
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.
基金supported by National Natural Science Foundation of China (No. 11171125,91130003)Natural Science Foundation of Hubei (No. 2011CDB289)Youth Foundation of Naval University of Engineering (No.HGDQNJJ10003)
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.
基金This project is supported by NSF of China (No.10101012)Shanghai Rising Star Program (No.03QA14036) The Special Funds for Major Specialties of Shanghai Education Committee.
文摘This paper deals with analytic and numerical dissipativity and exponential stability of singularly perturbed delay differential equations with any bounded state-independent lag. Sufficient conditions will be presented to ensure that any solution of the singularly perturbed delay differential equations (DDEs) with a bounded lag is dissipative and exponentially stable uniformly for sufficiently small ε > 0. We will study the numerical solution defined by the linear θ-method and one-leg method and show that they are dissipative and exponentially stable uniformly for sufficiently small ε > 0 if and only if θ = 1.
基金The authors would like to thank the editors and reviewers for their valuable comments and constructive suggestions which improved the quality of the paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11661054 and 11461053).
文摘In this paper, a class of stochastic Lotka Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and Ito formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.
基金funded by Universiti Teknikal Malaysia Melaka and Ministry of Higher Education(MoHE)Malaysia,grant number FRGS/1/2024/FTKM/F00586.
文摘Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a twophase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.
基金supported by the National Natural Science Foundation for Excellent Young Scholars of China(No.52222110)the Natural Science Foundation of Jiangsu Province(No.BK20211230).
文摘Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2204402)the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B030330001)+7 种基金the Guangdong Science and Technology Project(Grant No.20220505020011)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.2021qntd28)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.2023lgbj020)SYSU Key Project of Advanced ResearchShenzhen Science and Technology Program(Grant No.JCYJ20220818102003006)the Shenzhen Science and Technology Program(Grant No.2021Szvup172)the supports from China Postdoctoral Science Foundation(Grant No.2021M703768)the supports from Guangdong Province Youth Talent Program(Grant No.2017GC010656)。
文摘The Clauser-Horne-Shimony-Holt(CHSH)game provides a captivating illustration of the advantages of quantum strategies over classical ones.In a recent study,a variant of the CHSH game leveraging a single qubit system,referred to as the CHSH^(*)game,has been identified.We demonstrate that this mapping relationship between these two games remains effective even for a non-unitary gate.Here we delve into the breach of Tsirelson’s bound in a non-Hermitian system,predicting changes in the upper and lower bounds of the player’s winning probability when employing quantum strategies in a single dissipative qubit system.We experimentally explore the impact of the CHSH^(*)game on the player’s winning probability in a single trapped-ion dissipative system,demonstrating a violation of Tsirelson’s bound under the influence of parity-time(PT)symmetry.These results contribute to a deeper understanding of the influence of non-Hermitian systems on quantum games and the behavior of quantum systems under PT symmetry,which is crucial for designing more robust and efficient quantum protocols.
基金Project(2022NSFSC0279)supported by the General Project of Sichuan Natural Science Foundation,ChinaProject(Z17113)supported by the Key Scientific Research Fund of Xihua University,ChinaProject(SR21A04)supported by the Research Center for Social Development and Social Risk Control of Sichuan Province,Key Research Base of Philosophy and Social Sciences,Sichuan University,China。
文摘Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12074206)the Natural Science Foundation of Zhejiang Province of China (Grant No.LY22A040005)supported by the National Natural Science Foundation of China (Grant No. 22103043)。
文摘Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.
基金supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss,among which a key phenomenon is the non-Hermitian skin effect.Here we report an experimental scheme to realize a twodimensional(2D)discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion.It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion,respectively.We numerically observe a directional bulk flow,whose orientations are controlled by dissipative parameters,showing the emergence of the non-Hermitian skin effect.We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca^(+)ion.Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms,such as superconducting circuits and atoms in cavity.
基金support of the National Natural Science Foundation of China(U20A20111,42107189).
文摘Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.
基金financially supported by the National Natural Science Foundation of China(Nos.52011530037 and 51904019)。
文摘Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11705164 and 11874324).
文摘We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique.By employing these approaches,we generate hierarchies of explicit dissipative vector vortices(DVVs)that possess diverse vorticity values.Numerous fundamental characteristics of the DVVs are examined,encompassing amplitude profiles,energy fluxes,parameter effects,as well as linear and dynamic stability.