The objective of this study was to improve primary-amine nitrogen (1°-N) quantification in dissolved organic matter (DOM) originating from natural waters where inorganic forms of N, which may cause analytical int...The objective of this study was to improve primary-amine nitrogen (1°-N) quantification in dissolved organic matter (DOM) originating from natural waters where inorganic forms of N, which may cause analytical interference, are commonly encountered. Efforts were targeted at elucidating organic-N structural criteria influencing the response of organic amines to known colorimetric and fluorescent reagents and exploring the use of divalent metal-assisted amide hydrolysis in combination with fluorescence analyse...展开更多
Accurate quantification of dissolved organic nitrogen(DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species(DIN) from total d...Accurate quantification of dissolved organic nitrogen(DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species(DIN) from total dissolved nitrogen(TDN). Size exclusion chromatography coupled with an organic nitrogen detector(SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SECOND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet(VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass(sample concentration × injection volume) < 1000 μL × mg-N/L for macromolecular proteins, and neutral p H mobile eluent. The dissolved O_(2)concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column(20 × 250 mm),HW40S column(20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO_(4)·2H_(2)O + 2.5g/L KH_(2)PO_(4)(p H = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.展开更多
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtrop...Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two planta- tions of Schima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 -N, NH4 -N and total dissolved N (TDN). DON was calculated by subtracting NO3 -N and NH4 -N from TDN. The results - + - + showed that the precipitation had a mean DOC concentration of 1.7 mg·L-1 and DON concentration of 0.13 mg·L-1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L-1 in the SS and 10.3 and 0.19 mg·L-1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L-1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L-1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipita- tion tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September-November period.展开更多
Dissolved organic nitrogen(DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products(N-DBPs). This work was designed to explore the transformati...Dissolved organic nitrogen(DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products(N-DBPs). This work was designed to explore the transformation and fate of DON and dissolved inorganic nitrogen(DIN) in drinking water treatment. The changes of DON and formation of N-DBPs were evaluated along the water treatment route(i.e., pre-ozonation and biologicalcontact oxidation, delivery pipes’ transportation, coagulation-sedimentation, sand filtration, post-ozonation, biological activated carbon, ultrafiltration and disinfection) of drinking water treatment plant(DWTP). The transformation mechanism of DON was comprehensively investigated by molecular weight fractionation, three-dimensional fluorescence, LCOCD(Liquid Chromatography-Organic Carbon Detection), total free amino acids. A detailed comparison was made between concentrations and variations of DON and DIN affected by seasons in the drinking water treatment. Regardless of seasonal variation in raw water concentration, the DON removal trends between different treatment processes remain constant in the present study. Compared to other treatment processes, pre-ozonation and coagulation-sedimentation exhibited the dominant DON removal in different seasons, i.e.,11.13%-14.45% and 14.98%-22.49%, respectively. Contrary, biological-contact oxidation and biological activated carbon negatively impacted the DON removal, in which DON increased by 1.76%-6.49% in biological activated carbon. This may be due to the release of soluble microbial products(SMPs) from bacterial metabolism, which was further validated by the rise of biopolymers in LC-OCD.展开更多
Dissolved organic nitrogen(DON)extracted from Lake Shankou sediments using KCl was isolated into hydrophobic and hydrophilic fractions.The bioavailabilities of the hydrophobic and hydrophilic fractions to three type...Dissolved organic nitrogen(DON)extracted from Lake Shankou sediments using KCl was isolated into hydrophobic and hydrophilic fractions.The bioavailabilities of the hydrophobic and hydrophilic fractions to three types of bacterial communities collected from sediments,activated sludge and compost products were examined.The DON recoveries obtained by DAX-8 and cation exchange resins treatment were 96.17% ± 1.58% and 98.14% ±0% for the samples obtained from N4 and N14 stations,respectively.After 25 days of incubation at 25℃,most DON(59% to 96%)was degraded.Hydrophilic DON exhibited a higher reduction rate than hydrophobic DON during the growth phase.Untreated wastewater from Changshuihe town was the main degradable DON source to station N4,and 93% of hydrophilic DON and 80% of hydrophobic DON were degraded.Station N14 received a large amount of refractory DON from forest soils and exhibited DON degradation rates of 82% and 71% for the hydrophilic and hydrophobic fractions,respectively.Amino acid contents and fluorescence intensities were also analyzed.Approximately 27% to 74% of amino acids were taken up by day 5,and their concentration gradually increased in the following days due to the decomposition of dissolved proteins.Parallel factor analysis resulted in identification of tryptophan-like proteins,tyrosine-like proteins and FA-like substances.During the growth phase,40%–51% of the tryptophan-like proteins were taken up by bacteria,and the accumulation of tyrosine-like proteins was attributed to the release of biotic substances.The concentration of the FA-like substances decreased due to microbial decomposition.展开更多
This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),...This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),and microbial community.Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days(d),the maximum methane production rate of sludge samples dosed with respective Fe^(0),Fe(II)and Fe(III)at the same concentration showed indiscernible differences at each iron dose,regardless of the different iron valence.Moreover,their behavior in changes of ORP,DON and microbial community was different:(1)the addition of Fe^(0) made the ORP of sludge more negative,and the addition of Fe(II)and Fe(III)made the ORP of sludge less negative.However,whether being more or less negative,the changes of ORP may show unobservable effects on methane yield when it ranged from−278.71 to−379.80 mV;(2)the degradation of dissolved organic nitrogen,particularly proteins,was less efficient in sludge samples dosed with Fe^(0) compared with those dosed with Fe(II)and Fe(III)after an incubation period of 30 d.At the same dose of 160 mg/L iron,more cysteine was noted in sludge samples dosed with Fe(II)(30.74 mg/L)and Fe(III)(27.92 mg/L)compared with that dosed with Fe^(0)(21.75 mg/L);(3)Fe^(0) particularly promoted the enrichment of Geobacter,and it was 6 times higher than those in sludge samples dosed with Fe(II)and Fe(III)at the same dose of 160 mg/L iron.展开更多
The algal uptake of dissolved organic nitrogen (DON) in the anaerobic-anoxic-oxic (A20) process was investigated in this study. Anaerobic, aerobic and effluent DON samples from two wastewater treatment plants (WW...The algal uptake of dissolved organic nitrogen (DON) in the anaerobic-anoxic-oxic (A20) process was investigated in this study. Anaerobic, aerobic and effluent DON samples from two wastewater treatment plants (WWTPs) were separated into hydrophilic and hydrophobic fractions using a DAX-8 resin coupled with an anion exchange resin and a nanofiltration (NF) pretreatment Hydrophilic DON accounted for 66.66%-88.74% of the entire DON for the two plants evaluated. After a 1S-day incubation, 16.95%-91.75% DON was bioavailable for algal growth, and untreated samples exhibited higher DON bioavailability, with 52.83% DON average uptake rates, compared with the hydrophilic and hydrophobic fractions (45.53% and 44.40%, respectively) because the pretreatment caused the inorganic salt to be resistant to algae. Anaerobic untreated samples, hydrophilic fractions and hydrophobic fractions showed higher DON reduction rates and higher biomass accumulation compared with the other DON fractions due to the decomposition of resistant organics by anaerobic and anoxic bacteria. DON in aerobic and effluent samples of plant A was more bioavailable than that of plant B with usages of 27.49%-55.26% DON. DON bioavailability in the anaerobic-anoxic-oxic process decreased in the following order: anaerobic 〉 effluent 〉 aerobic. The DON contents were reduced after anaerobic treatment in the two plants. The EEM-PARAFAC model identified three DON components, including two humic acid-like substances and one protein-like substance in plant A and two protein-like substances and one humic acid-like substance in plant B.展开更多
Effluent dissolved organic nitrogen(DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits.Bioavailable DON(ABDON) is a portion...Effluent dissolved organic nitrogen(DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits.Bioavailable DON(ABDON) is a portion of DON utilized by algae or algae + bacteria,while biodegradable DON(BDON) is a portion of DON decomposable by bacteria.ABDON and BDON in a two-stage trickling filter(TF) wastewater treatment plant was evaluated using three different microalgal species,Selenastrum capricornutum,Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria.Results showed that up to80% of DON was bioavailable to algae or algae + bacteria inoculum while up to 60% of DON was biodegradable in all the samples.Results showed that C.reinhardtii and C.vulgaris can be used as a test species the same as S.capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem;however,the research on the impact of the freeze-thaw...The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem;however,the research on the impact of the freeze-thaw action on nitrogen processes of the alpine grassland ecosystem on the Tibetan Plateau has not yet attracted much attention.In this study,the impact of the freezing strength on the soil nitrogen components of alpine grassland on the Tibetan Plateau was studied through laboratory freeze-thaw simulation experiments.The 0–10 cm topsoil was collected from the alpine marsh meadow and alpine meadow in the permafrost region of Beilu River.In the experiment,the soil samples were cultivated at –10℃,–7℃,–5℃,–3℃ and –1℃,respectively for three days and then thawed at 2℃ for one day.The results showed that after the freeze-thaw process,the soil microbial biomass nitrogen significantly decreased while the dissolved organic nitrogen and inorganic nitrogen significantly increased.When the freezing temperature was below –7℃,there was no significant difference between the content of nitrogen components,which implied a change of each nitrogen component might have a response threshold toward the freezing temperature.As the freeze-thaw process can lead to the risk of nitrogen loss in the alpine grassland ecosystem,more attention should be paid to the response of the soil nitrogen cycle of alpine grasslands on the Tibetan Plateau to the freeze-thaw process.展开更多
Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have be...Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have been analyzed in order to provide theoretical bases for prevention and reduction of eutrophication. The analyzed results show that nitrogen forms in the influent area of the reservoir are given priority to ammonia nitrogen and nitrate nitrogen, whose proportion is more than 45% respectively, and this is probably caused by the pollution of inflow water quality;but in the effluent area, the forms are given priority to nitrate nitrogen, whose proportion is as high as 96% and above;also the proportion of ammonia nitrogen drops by more than 80% during the process from the influent area to the effluent area, and this shows that the natural process of nitrification and denitrification can be well accomplished in the reservoir. We recommend here that to reduce the input amount of ammonia nitrogen and organic nitrogen into the reservoir is the most efficient way to prevent or mitigate eutrophication of water body.展开更多
The formation of cancinogenic nitrosamines, esp. N-nitrosodimethylamine (NDMA) in water and wastewater treatment plants has drawn much attention in recent years. Dissolved organic matter from the transported Luan Ri...The formation of cancinogenic nitrosamines, esp. N-nitrosodimethylamine (NDMA) in water and wastewater treatment plants has drawn much attention in recent years. Dissolved organic matter from the transported Luan River water as water source of Tianjin was fractionated with different XAD resins and a series of ultra-filtration membranes with molecular weight (MW) cut-offs of 5k Da, 3k Da, and lk Da, respectively. The NDMA yields from the raw water and each fraction were measured to investigate their role in NDMA yield. Results indicated that the hydrophilic fraction had a higher NDMA yield than those of hydrophobic fraction and transphilic fraction. The fraction with MW below lk Da had a higher NDMA yield than that with larger MW. NDMA formation increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased, which indicated that DON might serve as the real important precursor for NDMA. The correlation between NDMA yield and specific ultraviolet absorbance at 254nm (SUVA254) suggested that the latter might not represent the specific precursors for NDMA in the water. Besides the water quality, the influences of pH, disinfectant dosage, and disinfection contact time on the formation of NDMA were also examined. These results will help water treatment plants establish measures to control this harmful disinfection by-product.展开更多
In order to determine the relative aging status of upwelled or vertically mixed water in the northern Taiwan Strait, a recently developed method of calculating the degree of nutrient consumption (DNC) was employed. Up...In order to determine the relative aging status of upwelled or vertically mixed water in the northern Taiwan Strait, a recently developed method of calculating the degree of nutrient consumption (DNC) was employed. Upwelling was detected at a water depth of about 75 m in summer. Bottom waters in the aphotic zone and newly-upwelled waters in the euphoric zone were found to be low in terms of their DNC. In general, a low DNC was noted alongside the other traditional upwelling indicators, such as lower temperature and degree of oxygen saturation, but higher salinity, apparent oxygen utilization, nutrient contents and chlorophyll-a. Enhanced vertical mixing, but without an apparent upwelling signal, was detected near the same location in winter.展开更多
Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which large...Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon(DOC) and dissolved organic nitrogen(DON)were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon(SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen(TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO3-N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices.展开更多
A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated p...A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching.Average concentrations of N-nitrosodimethylamine(NDMA),N-nitrosomorpholine(NMOR),and N-nitrosopyrrolidine(NPYR) in the finished water were6.9,3.3,and 3.1 ng/L,respectively,from June to October when the Luan River water was used as source water,while those of NDMA,N-nitrosomethylethylamine(NMEA),and NPYR in the finished water were 10.1,4.9,and 4.7 ng/L,respectively,from November to next April when the Yellow River was used.NDMA concentration in the finished water was frequently over the 10 ng/L,i.e.,the notification level of California,USA,which indicated a considerable threat to public health.Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen.展开更多
Many studies have investigated the effects of different pretreatments on the performance of anaerobic digestion of sludge.However,the detailed changes of dissolved organic nitrogen,particularly the release behavior of...Many studies have investigated the effects of different pretreatments on the performance of anaerobic digestion of sludge.However,the detailed changes of dissolved organic nitrogen,particularly the release behavior of proteins and the byproducts of protein hydrolysis-amino acids,are rarely known during anaerobic digestion of sludge by different pretreatments.Here we quantified the changes of three types of proteins and 17 types of amino acids in sludge samples solubilized by ultrasonic,thermal,and acid/alkaline pretreatments and their transformation during anaerobic digestion of sludge.Tryptophan protein,aromatic protein I,aromatic protein II,and cysteine were identified as the key dissolved organic nitrogen responsible for methane production during anaerobic digestion of sludge,regardless of the different pretreatment methods.Different from the depletion of other amino acids,cysteine was resistant to degradation after an incubation period of 30 days in all sludge samples.Meanwhile,the“cysteine and methionine metabolism(K00270)”was absent in all sludge samples by identifying 6755 Kyoto Encyclopedia of Genes and Genomes assignments of genes hits.Cysteine contributed to the generation of methane and the degradation of acetic,propionic,and n-butyric acids through decreasing oxidation-reduction potential and enhancing biomass activity.This study provided an alternative strategy to enhance anaerobic digestion of sludge through in situ production of cysteine.展开更多
基金the Andrew Mellon Foundation,NSF Biocomplexity Program (Richter)NSF Career Grant BES-9984489(Vasudevan)and the EPA-STAR program (Fimmen) for funding.
文摘The objective of this study was to improve primary-amine nitrogen (1°-N) quantification in dissolved organic matter (DOM) originating from natural waters where inorganic forms of N, which may cause analytical interference, are commonly encountered. Efforts were targeted at elucidating organic-N structural criteria influencing the response of organic amines to known colorimetric and fluorescent reagents and exploring the use of divalent metal-assisted amide hydrolysis in combination with fluorescence analyse...
基金supported by the Basic Research Program of Jiangsu Province (No.BK20211557)the National Key R&D Program (No.2016YFE0112300)+1 种基金the National Natural Science Foundation of China (No.51708279)the High-level Talent Team Project of Quanzhou City (No. 2018CT006)。
文摘Accurate quantification of dissolved organic nitrogen(DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species(DIN) from total dissolved nitrogen(TDN). Size exclusion chromatography coupled with an organic nitrogen detector(SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SECOND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet(VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass(sample concentration × injection volume) < 1000 μL × mg-N/L for macromolecular proteins, and neutral p H mobile eluent. The dissolved O_(2)concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column(20 × 250 mm),HW40S column(20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO_(4)·2H_(2)O + 2.5g/L KH_(2)PO_(4)(p H = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.
文摘Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two planta- tions of Schima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 -N, NH4 -N and total dissolved N (TDN). DON was calculated by subtracting NO3 -N and NH4 -N from TDN. The results - + - + showed that the precipitation had a mean DOC concentration of 1.7 mg·L-1 and DON concentration of 0.13 mg·L-1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L-1 in the SS and 10.3 and 0.19 mg·L-1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L-1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L-1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipita- tion tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September-November period.
文摘Dissolved organic nitrogen(DON) has attracted much attention in drinking water treatment due to its potential to produce nitrogenous disinfection by-products(N-DBPs). This work was designed to explore the transformation and fate of DON and dissolved inorganic nitrogen(DIN) in drinking water treatment. The changes of DON and formation of N-DBPs were evaluated along the water treatment route(i.e., pre-ozonation and biologicalcontact oxidation, delivery pipes’ transportation, coagulation-sedimentation, sand filtration, post-ozonation, biological activated carbon, ultrafiltration and disinfection) of drinking water treatment plant(DWTP). The transformation mechanism of DON was comprehensively investigated by molecular weight fractionation, three-dimensional fluorescence, LCOCD(Liquid Chromatography-Organic Carbon Detection), total free amino acids. A detailed comparison was made between concentrations and variations of DON and DIN affected by seasons in the drinking water treatment. Regardless of seasonal variation in raw water concentration, the DON removal trends between different treatment processes remain constant in the present study. Compared to other treatment processes, pre-ozonation and coagulation-sedimentation exhibited the dominant DON removal in different seasons, i.e.,11.13%-14.45% and 14.98%-22.49%, respectively. Contrary, biological-contact oxidation and biological activated carbon negatively impacted the DON removal, in which DON increased by 1.76%-6.49% in biological activated carbon. This may be due to the release of soluble microbial products(SMPs) from bacterial metabolism, which was further validated by the rise of biopolymers in LC-OCD.
基金supported by the Mega-projects of Science Research for Water Environment Improvement(No.2012ZX07101-002)the National Natural Science Foundation of China(No.41303085)
文摘Dissolved organic nitrogen(DON)extracted from Lake Shankou sediments using KCl was isolated into hydrophobic and hydrophilic fractions.The bioavailabilities of the hydrophobic and hydrophilic fractions to three types of bacterial communities collected from sediments,activated sludge and compost products were examined.The DON recoveries obtained by DAX-8 and cation exchange resins treatment were 96.17% ± 1.58% and 98.14% ±0% for the samples obtained from N4 and N14 stations,respectively.After 25 days of incubation at 25℃,most DON(59% to 96%)was degraded.Hydrophilic DON exhibited a higher reduction rate than hydrophobic DON during the growth phase.Untreated wastewater from Changshuihe town was the main degradable DON source to station N4,and 93% of hydrophilic DON and 80% of hydrophobic DON were degraded.Station N14 received a large amount of refractory DON from forest soils and exhibited DON degradation rates of 82% and 71% for the hydrophilic and hydrophobic fractions,respectively.Amino acid contents and fluorescence intensities were also analyzed.Approximately 27% to 74% of amino acids were taken up by day 5,and their concentration gradually increased in the following days due to the decomposition of dissolved proteins.Parallel factor analysis resulted in identification of tryptophan-like proteins,tyrosine-like proteins and FA-like substances.During the growth phase,40%–51% of the tryptophan-like proteins were taken up by bacteria,and the accumulation of tyrosine-like proteins was attributed to the release of biotic substances.The concentration of the FA-like substances decreased due to microbial decomposition.
基金funded by the National Natural Science Foundation of China(Grant Nos.52170133,U1901216,51708239)the Natural Science Foundation of Hubei Province(No.2020CFA042)Applied Basic Research Program of Wuhan(No.2020020601012277),and Program for HUST Academic Frontier Youth Team.
文摘This study compared effects of three different valent iron(Fe^(0),Fe(II)and Fe(III))on enhanced anaerobic sludge digestion,focusing on the changes of oxidation reduction potential(ORP),dissolved organic nitrogen(DON),and microbial community.Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days(d),the maximum methane production rate of sludge samples dosed with respective Fe^(0),Fe(II)and Fe(III)at the same concentration showed indiscernible differences at each iron dose,regardless of the different iron valence.Moreover,their behavior in changes of ORP,DON and microbial community was different:(1)the addition of Fe^(0) made the ORP of sludge more negative,and the addition of Fe(II)and Fe(III)made the ORP of sludge less negative.However,whether being more or less negative,the changes of ORP may show unobservable effects on methane yield when it ranged from−278.71 to−379.80 mV;(2)the degradation of dissolved organic nitrogen,particularly proteins,was less efficient in sludge samples dosed with Fe^(0) compared with those dosed with Fe(II)and Fe(III)after an incubation period of 30 d.At the same dose of 160 mg/L iron,more cysteine was noted in sludge samples dosed with Fe(II)(30.74 mg/L)and Fe(III)(27.92 mg/L)compared with that dosed with Fe^(0)(21.75 mg/L);(3)Fe^(0) particularly promoted the enrichment of Geobacter,and it was 6 times higher than those in sludge samples dosed with Fe(II)and Fe(III)at the same dose of 160 mg/L iron.
基金supported by the Mega-projects of the Science Research for Water Environment Improvement (no. 2012ZX07101-002)the National Natural Science Foundation of China (nos. 41521003, 41303085)
文摘The algal uptake of dissolved organic nitrogen (DON) in the anaerobic-anoxic-oxic (A20) process was investigated in this study. Anaerobic, aerobic and effluent DON samples from two wastewater treatment plants (WWTPs) were separated into hydrophilic and hydrophobic fractions using a DAX-8 resin coupled with an anion exchange resin and a nanofiltration (NF) pretreatment Hydrophilic DON accounted for 66.66%-88.74% of the entire DON for the two plants evaluated. After a 1S-day incubation, 16.95%-91.75% DON was bioavailable for algal growth, and untreated samples exhibited higher DON bioavailability, with 52.83% DON average uptake rates, compared with the hydrophilic and hydrophobic fractions (45.53% and 44.40%, respectively) because the pretreatment caused the inorganic salt to be resistant to algae. Anaerobic untreated samples, hydrophilic fractions and hydrophobic fractions showed higher DON reduction rates and higher biomass accumulation compared with the other DON fractions due to the decomposition of resistant organics by anaerobic and anoxic bacteria. DON in aerobic and effluent samples of plant A was more bioavailable than that of plant B with usages of 27.49%-55.26% DON. DON bioavailability in the anaerobic-anoxic-oxic process decreased in the following order: anaerobic 〉 effluent 〉 aerobic. The DON contents were reduced after anaerobic treatment in the two plants. The EEM-PARAFAC model identified three DON components, including two humic acid-like substances and one protein-like substance in plant A and two protein-like substances and one humic acid-like substance in plant B.
基金Funding for this research was provided by the North Dakota Water Resource Research Institute(NDWRRI)North Dakota Agricultural Experiment Station(NDAES)
文摘Effluent dissolved organic nitrogen(DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits.Bioavailable DON(ABDON) is a portion of DON utilized by algae or algae + bacteria,while biodegradable DON(BDON) is a portion of DON decomposable by bacteria.ABDON and BDON in a two-stage trickling filter(TF) wastewater treatment plant was evaluated using three different microalgal species,Selenastrum capricornutum,Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria.Results showed that up to80% of DON was bioavailable to algae or algae + bacteria inoculum while up to 60% of DON was biodegradable in all the samples.Results showed that C.reinhardtii and C.vulgaris can be used as a test species the same as S.capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
基金funded by the National Natural Science Foundation of China (31100337)the Scientific Research Foundation of Nanjing University of Information Science & Technology (2243141301132)
文摘The change of freeze-thaw pattern of the Tibetan Plateau under climate warming is bound to have a profound impact on the soil process of alpine grassland ecosystem;however,the research on the impact of the freeze-thaw action on nitrogen processes of the alpine grassland ecosystem on the Tibetan Plateau has not yet attracted much attention.In this study,the impact of the freezing strength on the soil nitrogen components of alpine grassland on the Tibetan Plateau was studied through laboratory freeze-thaw simulation experiments.The 0–10 cm topsoil was collected from the alpine marsh meadow and alpine meadow in the permafrost region of Beilu River.In the experiment,the soil samples were cultivated at –10℃,–7℃,–5℃,–3℃ and –1℃,respectively for three days and then thawed at 2℃ for one day.The results showed that after the freeze-thaw process,the soil microbial biomass nitrogen significantly decreased while the dissolved organic nitrogen and inorganic nitrogen significantly increased.When the freezing temperature was below –7℃,there was no significant difference between the content of nitrogen components,which implied a change of each nitrogen component might have a response threshold toward the freezing temperature.As the freeze-thaw process can lead to the risk of nitrogen loss in the alpine grassland ecosystem,more attention should be paid to the response of the soil nitrogen cycle of alpine grasslands on the Tibetan Plateau to the freeze-thaw process.
文摘Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have been analyzed in order to provide theoretical bases for prevention and reduction of eutrophication. The analyzed results show that nitrogen forms in the influent area of the reservoir are given priority to ammonia nitrogen and nitrate nitrogen, whose proportion is more than 45% respectively, and this is probably caused by the pollution of inflow water quality;but in the effluent area, the forms are given priority to nitrate nitrogen, whose proportion is as high as 96% and above;also the proportion of ammonia nitrogen drops by more than 80% during the process from the influent area to the effluent area, and this shows that the natural process of nitrification and denitrification can be well accomplished in the reservoir. We recommend here that to reduce the input amount of ammonia nitrogen and organic nitrogen into the reservoir is the most efficient way to prevent or mitigate eutrophication of water body.
文摘The formation of cancinogenic nitrosamines, esp. N-nitrosodimethylamine (NDMA) in water and wastewater treatment plants has drawn much attention in recent years. Dissolved organic matter from the transported Luan River water as water source of Tianjin was fractionated with different XAD resins and a series of ultra-filtration membranes with molecular weight (MW) cut-offs of 5k Da, 3k Da, and lk Da, respectively. The NDMA yields from the raw water and each fraction were measured to investigate their role in NDMA yield. Results indicated that the hydrophilic fraction had a higher NDMA yield than those of hydrophobic fraction and transphilic fraction. The fraction with MW below lk Da had a higher NDMA yield than that with larger MW. NDMA formation increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased, which indicated that DON might serve as the real important precursor for NDMA. The correlation between NDMA yield and specific ultraviolet absorbance at 254nm (SUVA254) suggested that the latter might not represent the specific precursors for NDMA in the water. Besides the water quality, the influences of pH, disinfectant dosage, and disinfection contact time on the formation of NDMA were also examined. These results will help water treatment plants establish measures to control this harmful disinfection by-product.
文摘In order to determine the relative aging status of upwelled or vertically mixed water in the northern Taiwan Strait, a recently developed method of calculating the degree of nutrient consumption (DNC) was employed. Upwelling was detected at a water depth of about 75 m in summer. Bottom waters in the aphotic zone and newly-upwelled waters in the euphoric zone were found to be low in terms of their DNC. In general, a low DNC was noted alongside the other traditional upwelling indicators, such as lower temperature and degree of oxygen saturation, but higher salinity, apparent oxygen utilization, nutrient contents and chlorophyll-a. Enhanced vertical mixing, but without an apparent upwelling signal, was detected near the same location in winter.
基金partially supported by a United College Endowment Fund
文摘Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon(DOC) and dissolved organic nitrogen(DON)were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon(SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen(TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO3-N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices.
基金supported by the National Natural Science Foundation of China (Nos.51290284 and 21477059)the Tsinghua University Initiative Scientific Research Program (No.20131089247)
文摘A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China.The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching.Average concentrations of N-nitrosodimethylamine(NDMA),N-nitrosomorpholine(NMOR),and N-nitrosopyrrolidine(NPYR) in the finished water were6.9,3.3,and 3.1 ng/L,respectively,from June to October when the Luan River water was used as source water,while those of NDMA,N-nitrosomethylethylamine(NMEA),and NPYR in the finished water were 10.1,4.9,and 4.7 ng/L,respectively,from November to next April when the Yellow River was used.NDMA concentration in the finished water was frequently over the 10 ng/L,i.e.,the notification level of California,USA,which indicated a considerable threat to public health.Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.51708239 and U1901216)Natural Science Foundation of Hubei Province(No.2020CFA042)+1 种基金Applied Basic Research Program of Wuhan(No.2020020601012277)Additionally,we would also like to thank the Analytical and Testing Center of Huazhong University of Science and Technology for providing experimental measurements.
文摘Many studies have investigated the effects of different pretreatments on the performance of anaerobic digestion of sludge.However,the detailed changes of dissolved organic nitrogen,particularly the release behavior of proteins and the byproducts of protein hydrolysis-amino acids,are rarely known during anaerobic digestion of sludge by different pretreatments.Here we quantified the changes of three types of proteins and 17 types of amino acids in sludge samples solubilized by ultrasonic,thermal,and acid/alkaline pretreatments and their transformation during anaerobic digestion of sludge.Tryptophan protein,aromatic protein I,aromatic protein II,and cysteine were identified as the key dissolved organic nitrogen responsible for methane production during anaerobic digestion of sludge,regardless of the different pretreatment methods.Different from the depletion of other amino acids,cysteine was resistant to degradation after an incubation period of 30 days in all sludge samples.Meanwhile,the“cysteine and methionine metabolism(K00270)”was absent in all sludge samples by identifying 6755 Kyoto Encyclopedia of Genes and Genomes assignments of genes hits.Cysteine contributed to the generation of methane and the degradation of acetic,propionic,and n-butyric acids through decreasing oxidation-reduction potential and enhancing biomass activity.This study provided an alternative strategy to enhance anaerobic digestion of sludge through in situ production of cysteine.