期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SYNTHESIS OF MONODISPERSE HOLLOW POLYMER MICROSPHERES WITH FUNCTIONAL GROUPS BY DISTILLATION PRECIPITATION POLYMERIZATION 被引量:4
1
作者 杨新林 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第2期277-285,共9页
Monodisperse hollow polymer microspheres having various functional groups on the shell-layer, such as carboxylic acid, pyridyl and amide, were prepared by two-stage distillation precipitation polymerization in neat ac... Monodisperse hollow polymer microspheres having various functional groups on the shell-layer, such as carboxylic acid, pyridyl and amide, were prepared by two-stage distillation precipitation polymerization in neat acetonitrile in the absence of any stabilizer or additive, during which monodisperse poly(methacrylic acid) (PMAA) afforded from the first-stage polymerization was utilized as the seeds for the second-stage polymerization. The shell layer with different functional groups was formed during the second-stage copolymerization of either divinylbenzene (DVB) or ethyleneglycol dimethacrylate (EGDMA) as crosslinker and the functional comonomers, in which the hydrogen-bonding interaction between the carboxylic acid group of PMAA core and the functional groups of the corresponding comonomers, including carboxylic acid, amide and pyridyl, played an essential role for the formation of monodisperse core-shell functional microspheres. The hollow polymer microspheres were then developed after the subsequent removal of PMAA cores by dissolution in ethanol under basic condition. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to determine the morphology of the resultant PMAA core, functional core-shell microspheres and the corresponding hollow polymer microspheres with different functional groups. FT-IR spectra confirmed the successful incorporation of the various functional groups on the shell layer of the hollow polymer microspheres. 展开更多
关键词 Hollow polymer microsphere distillation precipitation polymerization Functional microsphere Hydrogen- bonding interaction.
下载PDF
PREPARATION OF SILICA/POLY(METHACRYLIC ACID)/POLY(DIVINYLBENZENE-CO-METHACRYLIC ACID) TRI-LAYER MICROSPHERES AND THE CORRESPONDING HOLLOW POLYMER MICROSPHERES WITH MOVABLE SILICA CORE 被引量:1
2
作者 杨新林 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第5期807-817,共11页
Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corr... Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres, which were afforded by a three-stage reaction. Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid (MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica core, which was prepared by the Stober hydrolysis as the first stage reaction. The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene (DVB) crosslinker in presence of silica/PMAA particles as seeds, in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure. The morphology and the structure of silica core, silica/PMAA core-shell particles, the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). 展开更多
关键词 Tri-layer hybrid microspheres Hollow polymer microspheres with movable core distillation precipitation polymerization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部