We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expr...Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.展开更多
A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial d...A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.展开更多
This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple...This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.展开更多
This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived vi...This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived via Duboviskij-Milujin theorem.展开更多
Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the charac...Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.展开更多
Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The nece...Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The necessary and sufficient conditions concerning the exponential stability of thefirst order singular distributed parameter systems are given.展开更多
Exact controllability of singular distributed parameter control system is discussed via functional analysis and the theory of generalized operator semi-group in Hilbert space, Necessary and sufficient conditions conce...Exact controllability of singular distributed parameter control system is discussed via functional analysis and the theory of generalized operator semi-group in Hilbert space, Necessary and sufficient conditions concerning the exact controllability are given. Relations between exact controllability and stability of singular distributed parameter system are specified.展开更多
Feedback stabilization for a class of second order singular distributed parameter system with multi- inputs is discussed via functional analysis and operator theory in Hilbert space, the solutions of the problem and t...Feedback stabilization for a class of second order singular distributed parameter system with multi- inputs is discussed via functional analysis and operator theory in Hilbert space, the solutions of the problem and the constructive expressions of the solutions are given by the generalized inverse of bounded linear operator. This research is theoretically important for studying the stability of the singular distributed parameter system.展开更多
This paper studies the problem of adaptive neural networks control(ANNC) for uncertain parabolic distributed parameter systems(DPSs) with nonlinear periodic time-varying parameter(NPTVP). Firstly, the uncertain nonlin...This paper studies the problem of adaptive neural networks control(ANNC) for uncertain parabolic distributed parameter systems(DPSs) with nonlinear periodic time-varying parameter(NPTVP). Firstly, the uncertain nonlinear dynamic and unknown periodic TVP are represented by using neural networks(NNs) and Fourier series expansion(FSE), respectively. Secondly, based on the ANNC and reparameterization approaches, two control algorithms are designed to make the uncertain parabolic DPSs with NPTVP asymptotically stable. The sufficient conditions of the asymptotically stable for the resulting closed-loop systems are also derived. Finally, a simulation is carried out to verify the effectiveness of the two control algorithms designed in this work.展开更多
In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is establishe...In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved.To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking error. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
Necessary and sufficient conditions for the exact controllability and approximate controllability of a singular distributed parameter system are obtained.These general results are used to examine the exact controllabi...Necessary and sufficient conditions for the exact controllability and approximate controllability of a singular distributed parameter system are obtained.These general results are used to examine the exact controllability and approximate controllability of the Dzektser equation in the theory of seepage.展开更多
State feedback and pole assignment of the second order coupled singular distributed parameter systems are discussed via functional analysis and operator theory in Hilbert space, in which infinite many poles are change...State feedback and pole assignment of the second order coupled singular distributed parameter systems are discussed via functional analysis and operator theory in Hilbert space, in which infinite many poles are changed. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse of bounded linear operator. This research is theoretically important for studying the pole assignment and stabilization of the singular distributed parameter systems.展开更多
This paper considers the state observation for a class of distributed parameter systems(DPSs)with moving boundaries modelled by parabolic partial differential equations(PDEs).The method of mobile observation is presen...This paper considers the state observation for a class of distributed parameter systems(DPSs)with moving boundaries modelled by parabolic partial differential equations(PDEs).The method of mobile observation is presented to improve the observation performance of the systems and to eliminate the influence of moving boundaries on system observation with the aids of mobile sensor networks(MSNs).The MSNs which can move throughout the time-dependent spatial domain are used to provide the spatially averaged observations of the DPSs.By using the abstract evolution equation theory of parabolic PDEs and the Lyapunov stability arguments,a centralised observer is designed and a mobile control scheme for each of the mobile sensors is presented while taking account of the dynamics of the MSNs.A numerical example is finally presented to illustrate the effectiveness and the advantages of the proposed approach.展开更多
The present paper is concerned with stability and L_(2) gain analysis of switched distributed parameter system(SDPS)with time delay.First,exponential stability is discussed,and the state decay estimate of the system i...The present paper is concerned with stability and L_(2) gain analysis of switched distributed parameter system(SDPS)with time delay.First,exponential stability is discussed,and the state decay estimate of the system is explicitly given by using linear matrix inequalities(LMIs)incorporating with the average dwell time(ADT)method.Second,L_(2) gain analysis is also studied.At last,illustrative examples are given to show the effectiveness of the proposed method.The main contribution of the paper is:some criteria of exponential stability and L_(2) gain for multiple-input multiple-output(MIMO)switched PDE are developed in the form of LMIs and ADT signal for the first time.The advantage of the work is we generalize the application range of the related research.The proposed method is expected to provide an effective tool for stability and H∞control analysis of SDPS.展开更多
Most systems arising in engineering fields are spatiotemporal processes in nature so that their behavior must depend on time as well as spatial position.These spatiotemporal processes are in general modeled by partial...Most systems arising in engineering fields are spatiotemporal processes in nature so that their behavior must depend on time as well as spatial position.These spatiotemporal processes are in general modeled by partial differential equations.Substantial literature on the research of distributed parameter systems(DPSs)has been reported over the past decades.Amount of results on analysis and control of DPSs have been developed in these research articles,which include not only extensions of finite-dimensional techniques to infinite-dimensional systems but also innovative infinite-dimensional analysis and control design approaches.Hence,a comprehensive survey of all the developments of DPSs is perhaps a very difficult task.This paper,however,attempts to present a brief yet reasonable overview of research on the analysis and control of distributed parameter systems for applications.To help readers,some simple mathematical descriptions and necessary figures are involved in this article.Finally,some open areas of research and possible directions have also been outlined.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
In this paper, the pole assignment problem is considered for a class of distributed parameter systems with unbounded input element and with multiple spectral structure. A formula on the spectrum of the closed loop ope...In this paper, the pole assignment problem is considered for a class of distributed parameter systems with unbounded input element and with multiple spectral structure. A formula on the spectrum of the closed loop operator is proved and a formula of pole assignment is obtained. Finally, an example concerning a beam vibration is given.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
文摘Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)
文摘A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.
基金supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61104155)the Fundamental Research Funds for theCentral Universities,China(Grant Nos.JUDCF13037 and JUSRP51322B)+1 种基金the Programme of Introducing Talents of Discipline to Universities,China(GrantNo.B12018)the Jiangsu Innovation Program for Graduates,China(Grant No.CXZZ13-0740)
文摘This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.
文摘This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived via Duboviskij-Milujin theorem.
基金Supported by the national natural science foundation (60574042)
文摘Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.
基金This research is supported by the National Natural Science Foundation of China under Grant No.60674018.
文摘Exponential stability of the first order singular distributed parameter systems is discussedin the light of degenerate semi-group methods,which is described by the abstract developing equationin Hilbert space.The necessary and sufficient conditions concerning the exponential stability of thefirst order singular distributed parameter systems are given.
基金Supported by the National Natural Science Foundation of China (Grant No. 60674018)
文摘Exact controllability of singular distributed parameter control system is discussed via functional analysis and the theory of generalized operator semi-group in Hilbert space, Necessary and sufficient conditions concerning the exact controllability are given. Relations between exact controllability and stability of singular distributed parameter system are specified.
基金Supported by the National Natural Science Foundation of China(No.60674018)the Natural Sciences Research Foundation of the Education Department of Jiangsu Province in China(No.08KJD510003)
文摘Feedback stabilization for a class of second order singular distributed parameter system with multi- inputs is discussed via functional analysis and operator theory in Hilbert space, the solutions of the problem and the constructive expressions of the solutions are given by the generalized inverse of bounded linear operator. This research is theoretically important for studying the stability of the singular distributed parameter system.
基金supported by the National Natural Science Foundation of China (Grant No. 61573013)。
文摘This paper studies the problem of adaptive neural networks control(ANNC) for uncertain parabolic distributed parameter systems(DPSs) with nonlinear periodic time-varying parameter(NPTVP). Firstly, the uncertain nonlinear dynamic and unknown periodic TVP are represented by using neural networks(NNs) and Fourier series expansion(FSE), respectively. Secondly, based on the ANNC and reparameterization approaches, two control algorithms are designed to make the uncertain parabolic DPSs with NPTVP asymptotically stable. The sufficient conditions of the asymptotically stable for the resulting closed-loop systems are also derived. Finally, a simulation is carried out to verify the effectiveness of the two control algorithms designed in this work.
基金supported by National Natural Science Foundation of China(Nos.61364006 and 61374104)Guangxi Higher Education Science Research Projection(No.201203YB125)Project of Outstanding Young Teachers Training in Higher Education Institutions of Guangxi
文摘In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved.To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking error. A numerical example is given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos.61174081and 61273135。
文摘Necessary and sufficient conditions for the exact controllability and approximate controllability of a singular distributed parameter system are obtained.These general results are used to examine the exact controllability and approximate controllability of the Dzektser equation in the theory of seepage.
基金supported by the National Nature Science Foundation of China under Grant No.60674018
文摘State feedback and pole assignment of the second order coupled singular distributed parameter systems are discussed via functional analysis and operator theory in Hilbert space, in which infinite many poles are changed. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse of bounded linear operator. This research is theoretically important for studying the pole assignment and stabilization of the singular distributed parameter systems.
基金supported by the National Natural Science Foundation of China(61473136).
文摘This paper considers the state observation for a class of distributed parameter systems(DPSs)with moving boundaries modelled by parabolic partial differential equations(PDEs).The method of mobile observation is presented to improve the observation performance of the systems and to eliminate the influence of moving boundaries on system observation with the aids of mobile sensor networks(MSNs).The MSNs which can move throughout the time-dependent spatial domain are used to provide the spatially averaged observations of the DPSs.By using the abstract evolution equation theory of parabolic PDEs and the Lyapunov stability arguments,a centralised observer is designed and a mobile control scheme for each of the mobile sensors is presented while taking account of the dynamics of the MSNs.A numerical example is finally presented to illustrate the effectiveness and the advantages of the proposed approach.
基金This work was supported by the China Scholarship Council Fund(No.201808140223)the National Natural Science Foundation of China(No.11661020).
文摘The present paper is concerned with stability and L_(2) gain analysis of switched distributed parameter system(SDPS)with time delay.First,exponential stability is discussed,and the state decay estimate of the system is explicitly given by using linear matrix inequalities(LMIs)incorporating with the average dwell time(ADT)method.Second,L_(2) gain analysis is also studied.At last,illustrative examples are given to show the effectiveness of the proposed method.The main contribution of the paper is:some criteria of exponential stability and L_(2) gain for multiple-input multiple-output(MIMO)switched PDE are developed in the form of LMIs and ADT signal for the first time.The advantage of the work is we generalize the application range of the related research.The proposed method is expected to provide an effective tool for stability and H∞control analysis of SDPS.
基金supported by the National Science Fund for Distinguished Young Scholars(61125306)the National Natural Science Foundation of China(6107405791016004)
文摘Most systems arising in engineering fields are spatiotemporal processes in nature so that their behavior must depend on time as well as spatial position.These spatiotemporal processes are in general modeled by partial differential equations.Substantial literature on the research of distributed parameter systems(DPSs)has been reported over the past decades.Amount of results on analysis and control of DPSs have been developed in these research articles,which include not only extensions of finite-dimensional techniques to infinite-dimensional systems but also innovative infinite-dimensional analysis and control design approaches.Hence,a comprehensive survey of all the developments of DPSs is perhaps a very difficult task.This paper,however,attempts to present a brief yet reasonable overview of research on the analysis and control of distributed parameter systems for applications.To help readers,some simple mathematical descriptions and necessary figures are involved in this article.Finally,some open areas of research and possible directions have also been outlined.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
基金This work is suported by the National Natural Sciences Foundation of China the National Key Projectof China partly by
文摘In this paper, the pole assignment problem is considered for a class of distributed parameter systems with unbounded input element and with multiple spectral structure. A formula on the spectrum of the closed loop operator is proved and a formula of pole assignment is obtained. Finally, an example concerning a beam vibration is given.