This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent apert...This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.展开更多
For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,...For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.展开更多
In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization m...In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.展开更多
Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization amon...Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization among unit radars should be done before an ADCAR is intended to cohere on a potential target.To address this problem,a time and phase synchronization technique using clutter observations is proposed in this paper.Clutter returns from different azimuths and elevations on the surface of the earth are employed to calibrate system uncertainties.Two stages are mainly considered:a scene registration among range-Doppler units from different transmit/receive pairs is performed to enhance the clutter coherence in the first stage,followed by a joint estimation of those synchronization errors in the second stage.To relieve the computational burden,a novel Separable and Sequential Estimation(SSE)method is provided to separate the unknowns at the sacrifice of a range-Doppler unit.Moreover,performance analyses including the clutter coherence ability,estimation lower bound,and signal coherence loss are also performed.Finally,simulation results indicate that ADCAR time and phase synchronization is realized by using our methods.展开更多
This paper establishes the classic linear model of signal of the MIMO radar system with distributed apertures. Based on this model, the design principle and detection performance of MIMO radar detector is investigated...This paper establishes the classic linear model of signal of the MIMO radar system with distributed apertures. Based on this model, the design principle and detection performance of MIMO radar detector is investigated under conditions of Gaussian colored noise and partially correlated observation channels. First, the research on design principle of detector shows that the clutter suppression and matched filtering can be independently implemented at each receiving aperture, which greatly reduces the difficulty in implementation of these detectors. Based on these results, a Max detector is proposed for the case where partial channels are disabled due to strong noise and stealth techniques. The second part is the performance analysis of detector. The Fishier divergence coefficient and the statistical equivalent decomposition of limit statistics are used to theoretically analyze the detection performance of AMF detector, and then the analytical expressions of the detection performance of the AMF detector is derived. Analysis results show that both the colored nature of noise and the correlation among observation channels can reduce the capability of spatial diversity of the MIMO radar system, change the target RCSs among observation channels from quick fluctuation to slow fluctuation, and degenerate the detection performance of this radar system into that of the phased array radar system at high signal-to-noise ratio.展开更多
This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of...This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.展开更多
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)+2 种基金the Foundation of Tsinghua University(20101081772)the Foundation of National Laboratory of Information Control Technology for Communication System of Chinathe Foundation of National Information Control Laboratory
文摘This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6100203161101187)
文摘In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.
文摘Airborne Distributed Coherent Aperture Radar(ADCAR)is one of the most promising next-generation radars to significantly improve target detection and discrimination abilities.However,time and phase synchronization among unit radars should be done before an ADCAR is intended to cohere on a potential target.To address this problem,a time and phase synchronization technique using clutter observations is proposed in this paper.Clutter returns from different azimuths and elevations on the surface of the earth are employed to calibrate system uncertainties.Two stages are mainly considered:a scene registration among range-Doppler units from different transmit/receive pairs is performed to enhance the clutter coherence in the first stage,followed by a joint estimation of those synchronization errors in the second stage.To relieve the computational burden,a novel Separable and Sequential Estimation(SSE)method is provided to separate the unknowns at the sacrifice of a range-Doppler unit.Moreover,performance analyses including the clutter coherence ability,estimation lower bound,and signal coherence loss are also performed.Finally,simulation results indicate that ADCAR time and phase synchronization is realized by using our methods.
基金the Program for New Century Excellent Talents (Grant No. NCET-05-0912)the National Natural Science Foundation of China (Grant Nos. 60672140, 60802088)
文摘This paper establishes the classic linear model of signal of the MIMO radar system with distributed apertures. Based on this model, the design principle and detection performance of MIMO radar detector is investigated under conditions of Gaussian colored noise and partially correlated observation channels. First, the research on design principle of detector shows that the clutter suppression and matched filtering can be independently implemented at each receiving aperture, which greatly reduces the difficulty in implementation of these detectors. Based on these results, a Max detector is proposed for the case where partial channels are disabled due to strong noise and stealth techniques. The second part is the performance analysis of detector. The Fishier divergence coefficient and the statistical equivalent decomposition of limit statistics are used to theoretically analyze the detection performance of AMF detector, and then the analytical expressions of the detection performance of the AMF detector is derived. Analysis results show that both the colored nature of noise and the correlation among observation channels can reduce the capability of spatial diversity of the MIMO radar system, change the target RCSs among observation channels from quick fluctuation to slow fluctuation, and degenerate the detection performance of this radar system into that of the phased array radar system at high signal-to-noise ratio.
基金2011 China Aerospace Science and Technology Corporation Aerospace Science and Technology Innovation Foundation Subsidized Project2011 CASC and HIT Joint Technology Innovation Foundation
文摘This paper deals with the problem of clutter suppression in spaceborne distributed synthetic aperture radar (D-SAR) with nonuniform three-dimensional (3D) configuration geometry. In order to make a breakthrough of the configuration limitation of the traditional space time adaptive processing (STAP) based on uniform array and improve the inhomogeneous clutter suppres- sion performance, this paper considers signal reconstrtiction technique using array interpolation to process the D-SAR signal. An array interpolation signal reconstruction method based on pitching-partition is derived then a signal reconstruction 3D-STAP clutter suppression method applied to nonuniform 3D configuration is proposed. In particular, the proposed method is compared with conventional methods and the performance analysis is carried out based on simulations. The improvement factor (IF) for clutter suppression is imported and reported as a benchmark on the clutter suppression effect.