In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in com...Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.展开更多
The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big dat...The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big data collection,transmission,and storage,it is difficult to do data aggregation in real-world power systems,which directly retards the effective implementation of smart grid analytics.Federated learning,an advanced distributed learning method proposed by Google,seems a promising solution to the above issues.Nevertheless,it relies on a server node to complete model aggregation and the framework is limited to scenarios where data are independent and identically distributed.Thus,we here propose a serverless distributed learning platform based on blockchain to solve the above two issues.In the proposed platform,the task of machine learning is performed according to smart contracts,and encrypted models are aggregated via a mechanism of knowledge distillation.Through this proposed method,a server node is no longer required and the learning ability is no longer limited to independent and identically distributed scenarios.Experiments on a public electrical grid dataset will verify the effectiveness of the proposed approach.展开更多
The integration of distributed energy resources(DERs) into distribution networks is becoming increasingly important, as it supports the continued adoption of renewable power generation, combined heat and power plants,...The integration of distributed energy resources(DERs) into distribution networks is becoming increasingly important, as it supports the continued adoption of renewable power generation, combined heat and power plants, and storage systems. Nevertheless, inadvertent islanding operation is one of the major protection issues in distribution networks connected to DERs. This study proposes an intelligent islanding detection method(IIDM) using an intrinsic mode function(IMF)feature-based grey wolf optimized artificial neural network(GWO-ANN). In the proposed IIDM, the modal voltage signal is pre-processed by variational mode decomposition followed by Hilbert transform on each IMF to derive highly involved features. Then, the energy and standard deviation of IMFs are employed to train/test the GWO-ANN model for identifying the islanding operations from other non-islanding events. To evaluate the performance of the proposed IIDM, various islanding and non-islanding conditions such as faults, voltage sag, linear and nonlinear load and switching, are considered as the training and testing datasets. Moreover, the proposed IIDM is evaluated under noise conditions for the measured voltage signal. The simulation results demonstrate that the proposed IIDM is capable of differentiating between islanding and non-islanding events without any sensitivity under noise conditions in the test signal.展开更多
This paper presents a smart energy community management approach which is capable of implementing P2P trading and managing household energy storage systems.A smart residential community concept is proposed consisting ...This paper presents a smart energy community management approach which is capable of implementing P2P trading and managing household energy storage systems.A smart residential community concept is proposed consisting of domestic users and a local energy pool,in which users are free to trade with the local energy pool and enjoy cheap renewable energy while avoiding the installation of new energy generation equipment.The local energy pool could harvest surplus energy from users and renewable resources,at the same time it sells energy at a higher price than Feed-in-Tariff(FIT)but lower than the retail price.In order to encourage the participation in local energy trading,the electricity price of the energy pool is determined by a real-time demand/supply ratio.Under this pricing mechanism,retail price,users and renewable energy could all affect the electricity price which leads to higher consumers’profits and more optimized utilization of renewable energy.The proposed energy trading process was modeled as a Markov Decision Process(MDP)and a reinforcement learning algorithm was adopted to find the optimal decision in the MDP because of its excellent performance in on-going and model-free tasks.In addition,the fuzzy inference system makes it possible to use Q-learning in continuous state-space problems(Fuzzy Q-learning)considering the infinite possibilities in the energy trading process.To evaluate the performance of the proposed demand side management system,a numerical analysis is conducted in a community comparing the electricity costs before and after using the proposed energy management system.展开更多
Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convol...Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.展开更多
A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of ...A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of the dependence of repayment on each agent itself and the choice of other agents.Utilizing the idea of DAI,the intellectual unit of each robot and the change of task and environment,each agent can make decisions independently and finish various complicated tasks by communication and reciprocation between each other.The method is superior to other reinforcement learning methods commonly used in the multi-agent system.It can improve the convergence velocity of reinforcement learning,decrease requirements of computer memory,and enhance the capability of computing and logical ratiocinating for agent.The result of a simulated robot soccer match proves that the proposed cooperative strategy is valid.展开更多
Microgrids are gaining popularity by facilitating distributed energy resources(DERs)and forming essential consumer/prosumer centric integrated energy systems.Integration,coordination and control of multiple DERs and m...Microgrids are gaining popularity by facilitating distributed energy resources(DERs)and forming essential consumer/prosumer centric integrated energy systems.Integration,coordination and control of multiple DERs and managing the energy transition in this environment is a strenuous task.Classical control techniques are not enough to support dynamic microgrid environments.Implementation of Artificial Intelligence(AI)techniques seems to be a promising solution to enhance the control and operation of microgrids in future smart grid networks.Therefore,this paper briefly reviews the control architectures,existing conventional controlling techniques,their drawbacks,the need for intelligent controllers and then extensively reviews the possibility of AI implementation in different control structures with a special focus on the hierarchical control layers.This paper also investigates the AI-based control strategies in networked/interconnected/multi-microgrids environments.It concludes with the summary and future scopes of AI implementation in hierarchical control layers and structures including single and networked microgrids environments.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.
基金This work was funded by the Deanship of Scientific Research at King Saud University through research Group Number RG-1436-040.
文摘Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52007173 and U19B2042)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E070002)Zhejiang Lab’s Talent Fund for Young Professionals(Grant No.2020KB0AA01).
文摘The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big data collection,transmission,and storage,it is difficult to do data aggregation in real-world power systems,which directly retards the effective implementation of smart grid analytics.Federated learning,an advanced distributed learning method proposed by Google,seems a promising solution to the above issues.Nevertheless,it relies on a server node to complete model aggregation and the framework is limited to scenarios where data are independent and identically distributed.Thus,we here propose a serverless distributed learning platform based on blockchain to solve the above two issues.In the proposed platform,the task of machine learning is performed according to smart contracts,and encrypted models are aggregated via a mechanism of knowledge distillation.Through this proposed method,a server node is no longer required and the learning ability is no longer limited to independent and identically distributed scenarios.Experiments on a public electrical grid dataset will verify the effectiveness of the proposed approach.
基金supported by the National Research Foundation (NRF) of South Korea funded by the Ministry of Science, ICT & Future Planning (MSIP) of the Korean government (No.2018R1A2A1A05078680)。
文摘The integration of distributed energy resources(DERs) into distribution networks is becoming increasingly important, as it supports the continued adoption of renewable power generation, combined heat and power plants, and storage systems. Nevertheless, inadvertent islanding operation is one of the major protection issues in distribution networks connected to DERs. This study proposes an intelligent islanding detection method(IIDM) using an intrinsic mode function(IMF)feature-based grey wolf optimized artificial neural network(GWO-ANN). In the proposed IIDM, the modal voltage signal is pre-processed by variational mode decomposition followed by Hilbert transform on each IMF to derive highly involved features. Then, the energy and standard deviation of IMFs are employed to train/test the GWO-ANN model for identifying the islanding operations from other non-islanding events. To evaluate the performance of the proposed IIDM, various islanding and non-islanding conditions such as faults, voltage sag, linear and nonlinear load and switching, are considered as the training and testing datasets. Moreover, the proposed IIDM is evaluated under noise conditions for the measured voltage signal. The simulation results demonstrate that the proposed IIDM is capable of differentiating between islanding and non-islanding events without any sensitivity under noise conditions in the test signal.
基金This work was supported by the National Natural Science Foundation of China(No.51807024).
文摘This paper presents a smart energy community management approach which is capable of implementing P2P trading and managing household energy storage systems.A smart residential community concept is proposed consisting of domestic users and a local energy pool,in which users are free to trade with the local energy pool and enjoy cheap renewable energy while avoiding the installation of new energy generation equipment.The local energy pool could harvest surplus energy from users and renewable resources,at the same time it sells energy at a higher price than Feed-in-Tariff(FIT)but lower than the retail price.In order to encourage the participation in local energy trading,the electricity price of the energy pool is determined by a real-time demand/supply ratio.Under this pricing mechanism,retail price,users and renewable energy could all affect the electricity price which leads to higher consumers’profits and more optimized utilization of renewable energy.The proposed energy trading process was modeled as a Markov Decision Process(MDP)and a reinforcement learning algorithm was adopted to find the optimal decision in the MDP because of its excellent performance in on-going and model-free tasks.In addition,the fuzzy inference system makes it possible to use Q-learning in continuous state-space problems(Fuzzy Q-learning)considering the infinite possibilities in the energy trading process.To evaluate the performance of the proposed demand side management system,a numerical analysis is conducted in a community comparing the electricity costs before and after using the proposed energy management system.
文摘Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.
文摘A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of the dependence of repayment on each agent itself and the choice of other agents.Utilizing the idea of DAI,the intellectual unit of each robot and the change of task and environment,each agent can make decisions independently and finish various complicated tasks by communication and reciprocation between each other.The method is superior to other reinforcement learning methods commonly used in the multi-agent system.It can improve the convergence velocity of reinforcement learning,decrease requirements of computer memory,and enhance the capability of computing and logical ratiocinating for agent.The result of a simulated robot soccer match proves that the proposed cooperative strategy is valid.
文摘Microgrids are gaining popularity by facilitating distributed energy resources(DERs)and forming essential consumer/prosumer centric integrated energy systems.Integration,coordination and control of multiple DERs and managing the energy transition in this environment is a strenuous task.Classical control techniques are not enough to support dynamic microgrid environments.Implementation of Artificial Intelligence(AI)techniques seems to be a promising solution to enhance the control and operation of microgrids in future smart grid networks.Therefore,this paper briefly reviews the control architectures,existing conventional controlling techniques,their drawbacks,the need for intelligent controllers and then extensively reviews the possibility of AI implementation in different control structures with a special focus on the hierarchical control layers.This paper also investigates the AI-based control strategies in networked/interconnected/multi-microgrids environments.It concludes with the summary and future scopes of AI implementation in hierarchical control layers and structures including single and networked microgrids environments.