Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A...Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial d...A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling peri...This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling period, finite external disturbance, clock-driven sensors, event-driven controller and actuators as well as impulse behavior and structural instability of singular plants, the H∞ controller design method of SNCS with state feed- back way and dynamic output feedback way is investigated respectively by means of the linear matrix inequality method. The existence condition of H∞ control law, the solving approaches of H∞ controller parameters and disturbance attenuation degree are presented. Finally, a simulation example is given to illustrate the effectiveness and feasibility of the presented method.展开更多
The article revealed the software design issues for the object-oriented distributed system. By surveying several existed design is-sues, the solution of common design issues is conducted which is compromised by design...The article revealed the software design issues for the object-oriented distributed system. By surveying several existed design is-sues, the solution of common design issues is conducted which is compromised by design patterns. Each pattern is described according to itsfunctionality which could be valuable for objected-oriented distributed system developer.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an i...The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an identifier in adaptive control system.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller...Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the networkinduced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,or...The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.展开更多
In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the wat...In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.展开更多
An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes t...An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds.展开更多
基金Supported by the Aviation Science Foundation of China(2013ZC72006)
文摘Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)
文摘A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
文摘This paper investigates the H∞ controller design method for a class of singular networked control systems (SNCS) based on the singular plant. In view of the network-induced delay less than or equal to a sampling period, finite external disturbance, clock-driven sensors, event-driven controller and actuators as well as impulse behavior and structural instability of singular plants, the H∞ controller design method of SNCS with state feed- back way and dynamic output feedback way is investigated respectively by means of the linear matrix inequality method. The existence condition of H∞ control law, the solving approaches of H∞ controller parameters and disturbance attenuation degree are presented. Finally, a simulation example is given to illustrate the effectiveness and feasibility of the presented method.
文摘The article revealed the software design issues for the object-oriented distributed system. By surveying several existed design is-sues, the solution of common design issues is conducted which is compromised by design patterns. Each pattern is described according to itsfunctionality which could be valuable for objected-oriented distributed system developer.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.
文摘The realizing of Artificial Neural Network(ANN) in Distributed Control System (DCS) is discussed. The model of ANN designed can be called as easily as conventional algorithm. It can act as an ANN controller or as an identifier in adaptive control system.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
基金supported by National Natural Science Foundation of China (No. 60674024)Ph.D. Programs Foundation of Civil Aviation University of China (No. 06QD04x)Central College Basic Research Foundation (No. 2010D005)
文摘Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the networkinduced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
文摘The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.
基金Sponsored by the Project of Application Technology Research and Development Plan in Heilongjiang Province(Grant No.GA13C302)
文摘In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Natural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
文摘An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds.