Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formal...Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.展开更多
Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.Th...Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.展开更多
Correlative species distribution models(SDMs)are important tools to estimate species’geographic distribution across space and time,but their reliability heavily relies on the availability and quality of occurrence da...Correlative species distribution models(SDMs)are important tools to estimate species’geographic distribution across space and time,but their reliability heavily relies on the availability and quality of occurrence data.Estimations can be biased when occurrences do not fully represent the environmental requirement of a species.We tested to what extent species’physiological knowledge might influence SDM estimations.Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia,we compiled a comprehensive dataset of occurrence records.We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs:a naïve model that solely depends on environmental correlates,and a physiologically informed model that further incorporates physiological information as priors.We further tested the models’sensitivity to calibration area choices by fitting them with different buffered areas around known presences.Compared with naïve models,the physiologically informed models successfully captured the negative influence of high temperature on A.japonicus and were less sensitive to the choice of calibration area.The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change(i.e.,larger range expansion and less contraction)than the physiologically informed models.Our findings highlight benefits from incorporating physiological information into correlative SDMs,namely mitigating the uncertainties associated with the choice of calibration area.Given these promising features,we encourage future SDM studies to consider species physi-ological information where available.展开更多
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial comm...Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha...The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and e...Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approach may aid others faced with the challenge of addressing conservation issues with little data to inform decision making.展开更多
The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the retur...The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the return periods of 12 tide-gauge stations for storm surges were calculated separately with the methods of Gumbel and Pearson-III.The data of another six tide-gauge stations in Guangdong Coast was quoted to depict the overall features of storm surges in Guangdong.Using least-square method,the spatial distribution models of storm surges in different return periods were established to reveal the distribution rule of the set-up values of storm surges.The spatial distribution curves of storm surges in different return periods in the PRD Region were drawn up based on the models and the terrain of Guangdong Coast.According to the curves,the extreme set-up values of storm surges in 1 000,100,10 a return periods were determined on each spot of Guangdong Coast.Applying the spatial analysis technology of ArcGIS,with the topography data of the PRD Region,the submerged scopes of flood caused by storm surge in 1 000,100,10 a return periods were drawn up.The loss caused by storm surges was estimated.Results showed that the storm surges and the topography of PRD region jointly led to the serious flood in the PRD region.This assessment would be useful for the planning and design department to make decision and provide government scientific basis for storm surge prediction,coastal engineering designing and the prevention of storm surge disaster.展开更多
Brazil is one of the countries with the greatest biodiversity, being covered by diverse ecosystems. Native trees commercially planted generate numerous benefits for communities, providing cultural, recreational, touri...Brazil is one of the countries with the greatest biodiversity, being covered by diverse ecosystems. Native trees commercially planted generate numerous benefits for communities, providing cultural, recreational, tourism riches, as well as ecological benefits, such as nutrient regulation and carbon sequestration. Thus, this work aimed to generate potential distribution modeling for the Brazilian forest species, to provide information that will serve as a strategy for conservation, restoration and commercial plantation of them, that is, encouraging the use of legal native species in the forest sector. Eleven tree species and 19 bioclimatic variables were selected. The software Maxent 3.3.3 was applied in the generation of the distribution models and the area under the curve of receiver operating characteristic (AUC) was used to analyze the model. The Jackknife test contributed to identify which bioclimatic variables are most important or influential in the model. The models showed AUC values ranged from 0.857 to 0.983. The species with higher AUC values were Araucaria angustifolia, Mimosa scabrella and Euterpe edulis, respectively. The maximum temperature of warmest month showed the highest influence for the most species, followed by the mean diurnal range and annual precipitation. It was observed that for some species, there were restricted areas of environmental suitability, such as Araucaria angustifolia, Ilex paraguariensis and Mimosa scabrella. The models used could trace the potential distribution areas using the environmental variables, and these models contribute significantly to sustainable forest management.展开更多
Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusi...Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.展开更多
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some...The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.展开更多
We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubrida...We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.展开更多
Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hyp...Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hypothesis tests in statistical analysis,but the calculation results of different distribution models often vary largely.In this paper,based on the information entropy,the overall uncertainty test criteria were studied for commonly used distributions including Gumbel,Weibull,and Pearson-III distribution.An improved method for parameter estimation of the maximum entropy distribution model is proposed on the basis of moment estimation.The study in this paper shows that the number of sample data and the degree of dispersion are proportional to the information entropy,and the overall uncertainty of the maximum entropy distribution model is minimal compared with other models.展开更多
Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In thi...Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.展开更多
Diameter frequency distribution in a specific stand provides basic information for forest resources management. In this study, four probability models were applied to analyze diameter distribution of natural forests a...Diameter frequency distribution in a specific stand provides basic information for forest resources management. In this study, four probability models were applied to analyze diameter distribution of natural forests after selective cutting with different intensities (low intensity of 13.0% in volume, medium intensity of 29.1%, high intensity of 45.8%, and extra-high intensity of 67.1%) The results show that the skewness and kurtosis of the four models are positive except that of low intensity selective cutting, which suggest that the number of small-size trees dominate the stand. The more intensity of selective cutting, the wider range of diameter distributions. The diameter structure of selective cutting with low intensity met Weibull and Beta distributions; that of medium intensity met Weibull, negative exponential as well as Gamma distributions; that of high intensity cutting met Weibull and negative exponential distributions, but that of extra-high intensity could not meet any above model. Weibull distribution model fits better than others regarding the structure of diameter distribution in natural forests managed on polycyclic cutting system. The results will provide basic information for sustainable management for mixed natural stands managed on a polycyclic cutting system.展开更多
Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter ...Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter frequency distributions. The focus of this study is on predicting accuracy of stem number in the larger diameter classes, which is much more important than that of the smaller trees, from the view of forest management, and must be adequately considered in the modelling and estimate. There exist 3 traditional ways of modelling the diameter frequency distribution: the negative exponential function model, limiting line function model, and Weibull distribution model. In this study, a new model, named as the logarithmic J-shape function, together with the others, was experimented and was found as a more suitable model for modelling works in the tropical forests.展开更多
Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi...Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.展开更多
Predictive potential distribution modeling is of increasing importance in modern herpetological studies and determination of environmental and conservation priorities. In this article we provided results of analysis a...Predictive potential distribution modeling is of increasing importance in modern herpetological studies and determination of environmental and conservation priorities. In this article we provided results of analysis and forecasts of the potential distribution of smallscaled rock agama Paralaudakia microlepis (Blanford, 1874) using the distribution models through Maxent (www.cs.princeton.edu/- schapire / maxent). We made an attempt for comparison of input of bioclimatic factors and characteristics of biotope distribution for three species of genus Paralaudalda. Constructed model identified dissemination of Paralaudakia microlepis enough performance (AUC = 0.972 with dispersion 0.003). According to the map constructed, the most suitable habitats of smallscaled rock agama Paralaudakia microlepis are located in southern and eastern Iran, the west of central Pakistan and southeastern Afghanistan.展开更多
基金the State Assignment,project 075-00347-19-00(Patterns of the spatiotemporal dynamics of meadow and forest ecosystems in mountainous areas(Russian Western and Central Caucasus)WWF's‘Save the Forest-Home of Raptors’project(2020-2022).
文摘Abiotic factors play an important role in species localisation,but biotic and anthropogenic predictors must also be considered in distribution modelling for models to be biologically meaningful.In this study,we formalised the biotic predictors of nesting sites for four threatened Caucasian vultures by including species distribution models(wild ungulates,nesting tree species)as biotic layers in the vulture Maxent models.Maxent was applied in the R dismo package and the best set of the model parameters were defined in the R ENMeval package.Performance metrics were continuous Boyce index,Akaike's information criterion,the area under receiver operating curve and true skill statistics.We also calculated and evaluated the null models.Kernel density estimation method was applied to assess the overlap of vulture ecological niches in the environmental space.The accessibility of anthropogenic food resources was estimated using the Path Distance measure that considers elevation gradient.The availability of pine forests(Scots Pine)and wild ungulates(Alpine Chamois and Caucasian Goat)contributed the most(29.6%and 34.3%)to Cinereous Vulture(Aegypius monachus)nesting site model.Wild ungulate distribution also contributed significantly(about 46%)to the Bearded Vulture(Gypaetus barbatus)model.This scavenger nests in the highlands of the Caucasus at a minimum distance of 5–10 km from anthropogenic facilities.In contrast,livestock as a food source was most important in colony distribution of Griffon Vulture(Gyps fulvus).The contribution of distances to settlements and agricultural facilities to the model was 45%.The optimal distance from Egyptian Vulture(Neophron percnopterus)nesting sites to settlements was only 3–10 km,to livestock facilities no more than 15 km with the factor contribution of about 57%.Excluding the wild ungulate availability,the ecological niches of studied vultures overlapped significantly.Despite similar foraging and nesting requirements,Caucasian vultures are not pronounced nesting and trophic competitors due to the abundance of nesting sites,anthropogenic food sources and successful niche sharing.
基金Supported by Natural Science Foundation of Hunan Province (2021JJ30375)Natural Science Foundation of Hunan Provincial Department of Education (20A275)Science and Technology Innovation Team Project of Hunan Province (201937924).
文摘Species distribution models have been widely used to explore suitable habitats of species,the impact of climate change on the distribution of suitable habitats of species,and the construction of ecological reserves.This paper introduced species distribution models commonly used in biodiversity analysis,as well as model performance evaluation indexes,challenges in the application of species distribution models,and finally prospected the development trend of research on species distribution models.
基金support from the National Key R&D Program of China(2022YFC3102403)the Stra-tegic Priority Research Program of the Chinese Academy of Sciences(XDB42030204)+5 种基金Science and Technology Planning Project of Guang-dong Province,China(2023B1212060047)development fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(SCSIO202208)supported by JST SICORP Grant Number JPMJSC20E5,Japanthe Portuguese National Funds from FCT-Foundation for Science and Technology through projects UIDB/04326/2020,UIDP/04326/2020,LA/P/0101/2020,PTDC/BIA-CBI/6515/2020(https://doi.org/10.54499/PTDC/BIA-CBI/6515/2020)the Individual Call to Scientific Employment Stimulus 2022.00861.CEECINDsupported by the National Multidisciplinary Laboratory for Climate Change(NKFIH-471-3/2021,RRF-2.3.1-21-2022-00014).
文摘Correlative species distribution models(SDMs)are important tools to estimate species’geographic distribution across space and time,but their reliability heavily relies on the availability and quality of occurrence data.Estimations can be biased when occurrences do not fully represent the environmental requirement of a species.We tested to what extent species’physiological knowledge might influence SDM estimations.Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia,we compiled a comprehensive dataset of occurrence records.We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs:a naïve model that solely depends on environmental correlates,and a physiologically informed model that further incorporates physiological information as priors.We further tested the models’sensitivity to calibration area choices by fitting them with different buffered areas around known presences.Compared with naïve models,the physiologically informed models successfully captured the negative influence of high temperature on A.japonicus and were less sensitive to the choice of calibration area.The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change(i.e.,larger range expansion and less contraction)than the physiologically informed models.Our findings highlight benefits from incorporating physiological information into correlative SDMs,namely mitigating the uncertainties associated with the choice of calibration area.Given these promising features,we encourage future SDM studies to consider species physi-ological information where available.
基金This research was supported by NSF grants DBI-1458640 and DBI-1547229.
文摘Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios.Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics.Here,we focused on six species of allelopathic flowering plants-Ailanthus altissima,Casuarina equisetifolia,Centaurea stoebe ssp.micranthos,Dioscorea bulbifera,Lantana camara,and Schinus terebinthifolia-Xhat are invasive in North America and examined their potential to spread further during projected climate change.We used Species Distribution Models(SDMs)to predict future suitable areas for these species in North America under several proposed future climate models.ENMEval and Maxent were used to develop SDMs,estimate current distributions,and predict future areas of suitable climate for each species.Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America.Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States,while new areas may become suitable in the northeastern United States and southeastern Canada.These findings show an overall northward shift of suitable climate during the next few decades,given projected changes in temperature and precipitation.Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金supported by the National Natural Science Foundation of China(No.42071057).
文摘The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金supported by the United States Geological Survey(Ecosystems Mission Area)the National Science Foundation Small Grants for Exploratory Research(No.0713027)Wetlands International
文摘Background: A number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources.Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.Methods: Faced with limited data, we built species distribution models using a habitat suitability approach for China's breeding and non-breeding(hereafter, wintering) waterfowl.An extensive review of the literature was used to determine model parameters for habitat modeling.Habitat relationships were implemented in GIS using land cover covariates.Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.Results: We developed suitability models for 42 waterfowl species(30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps.Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China.Wintering waterfowl suitability was highest in the lowland regions of southeastern China.Validation measures indicated strong performance in predicting species presence.Comparing our model outputs to China's protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.Conclusions: These suitability models are the first available for many of China's waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically important areas, providing an example of how this approach may aid others faced with the challenge of addressing conservation issues with little data to inform decision making.
基金Supported by National Key Technology R&D Program of China(2006BAD20B05)
文摘The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the return periods of 12 tide-gauge stations for storm surges were calculated separately with the methods of Gumbel and Pearson-III.The data of another six tide-gauge stations in Guangdong Coast was quoted to depict the overall features of storm surges in Guangdong.Using least-square method,the spatial distribution models of storm surges in different return periods were established to reveal the distribution rule of the set-up values of storm surges.The spatial distribution curves of storm surges in different return periods in the PRD Region were drawn up based on the models and the terrain of Guangdong Coast.According to the curves,the extreme set-up values of storm surges in 1 000,100,10 a return periods were determined on each spot of Guangdong Coast.Applying the spatial analysis technology of ArcGIS,with the topography data of the PRD Region,the submerged scopes of flood caused by storm surge in 1 000,100,10 a return periods were drawn up.The loss caused by storm surges was estimated.Results showed that the storm surges and the topography of PRD region jointly led to the serious flood in the PRD region.This assessment would be useful for the planning and design department to make decision and provide government scientific basis for storm surge prediction,coastal engineering designing and the prevention of storm surge disaster.
文摘Brazil is one of the countries with the greatest biodiversity, being covered by diverse ecosystems. Native trees commercially planted generate numerous benefits for communities, providing cultural, recreational, tourism riches, as well as ecological benefits, such as nutrient regulation and carbon sequestration. Thus, this work aimed to generate potential distribution modeling for the Brazilian forest species, to provide information that will serve as a strategy for conservation, restoration and commercial plantation of them, that is, encouraging the use of legal native species in the forest sector. Eleven tree species and 19 bioclimatic variables were selected. The software Maxent 3.3.3 was applied in the generation of the distribution models and the area under the curve of receiver operating characteristic (AUC) was used to analyze the model. The Jackknife test contributed to identify which bioclimatic variables are most important or influential in the model. The models showed AUC values ranged from 0.857 to 0.983. The species with higher AUC values were Araucaria angustifolia, Mimosa scabrella and Euterpe edulis, respectively. The maximum temperature of warmest month showed the highest influence for the most species, followed by the mean diurnal range and annual precipitation. It was observed that for some species, there were restricted areas of environmental suitability, such as Araucaria angustifolia, Ilex paraguariensis and Mimosa scabrella. The models used could trace the potential distribution areas using the environmental variables, and these models contribute significantly to sustainable forest management.
基金The National Natural Science Foundation of China (No.70671021)
文摘Due to the fact that the emergency medicine distribution is vital to the quick response to urgent demand when an epidemic occurs, the optimal vaccine distribution approach is explored according to the epidemic diffusion rule and different urgency degrees of affected areas with the background of the epidemic outbreak in a given region. First, the SIQR (susceptible, infected, quarantined,recovered) epidemic model with pulse vaccination is introduced to describe the epidemic diffusion rule and obtain the demanded vaccine in each pulse. Based on the SIQR model, the affected areas are clustered by using the self-organizing map (SOM) neutral network to qualify the results. Then, a dynamic vaccine distribution model is formulated, incorporating the results of clustering the affected areas with the goals of both reducing the transportation cost and decreasing the unsatisfied demand for the emergency logistics network. Numerical study with twenty affected areas and four distribution centers is carried out. The corresponding numerical results indicate that the proposed approach can make an outstanding contribution to controlling the affected areas with a relatively high degree of urgency, and the comparison results prove that the performance of the clustering method is superior to that of the non-clustering method on controlling epidemic diffusion.
基金This work was supported by the major science and technology projects of CNPC during the“14th five-year plan”(Grant number 2021DJ0101)。
文摘The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.
基金Funding support for this work was provided by the Silvo-Pastoral Institute of Tabarka
文摘We used GIS and maximum entropy to predict the potential distribution of six snake species belong to three families in Kroumiria(Northwestern Tunisia): Natricidae(Natrix maura and Natrix astreptophora), Colubridae(Hemorrhois hippocrepis, Coronella girondica and Macroprotodon mauritanicus), and Lamprophiidae(Malpolon insignitus). The suitable habitat for each species was modelled using the maximum entropy algorithm, combining presence field data(collected during 16 years:2000–2015) with a set of seven environmental variables(mean annual precipitation, elevation, slope gradient,aspect, distance to watercourses, land surface temperature and normalized Differential Vegetation Index. The relative importance of these environmental variables was evaluated by jackknife tests and the predictive power of our models was assessed using the area under the receiver operating characteristic. The main explicative variables of the species distribution were distance from streams and elevation, with contributions ranging from 60 to 77 and from 10 to 25%,respectively. Our study provided the first habitat suitability models for snakes in Kroumiria and this information can be used by conservation biologists and land managers concerned with preserving snakes in Kroumiria.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52071306 and 51379195)the Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE050).
文摘Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hypothesis tests in statistical analysis,but the calculation results of different distribution models often vary largely.In this paper,based on the information entropy,the overall uncertainty test criteria were studied for commonly used distributions including Gumbel,Weibull,and Pearson-III distribution.An improved method for parameter estimation of the maximum entropy distribution model is proposed on the basis of moment estimation.The study in this paper shows that the number of sample data and the degree of dispersion are proportional to the information entropy,and the overall uncertainty of the maximum entropy distribution model is minimal compared with other models.
基金supported by the forestry public welfare scientific research project(Grant No.201504303)。
文摘Knowledge on the potential suitability of tree species to the site is very important for forest management planning.Natural forest distribution provides a good reference for afforestation and forest restoration.In this study,we developed species distribution model(SDM)for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model.Three types of environmental factors including bioclimate,soil and topography with a total of 33 variables were tested as the input.The values of area under the curve(AUC,one of the receiver operating characteristics of the Maxent model)in the training and test datasets were between 0.784 and 0.968,indicating that the prediction results were quite reliable.The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution.Generally,the climatic factors had the greatest contribution,which included mean diurnal range,annual mean temperature,temperature annual range,and iosthermality.But the main environmental factors varied with tree species.Distribution suitability maps under current(1950-2000)and future climate scenarios(CCSM4-RCP 2.6 and RCP 6.0 during 2050)were produced for 16 major tree species in Jilin Province using the model developed.The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate.Seven tree species were found to benefit from future climate including B etula costata,Fraxinus mandshurica,Juglans mandshurica,Phellodendron amurense,Populus ussuriensis,Quercus mongolica and Ulmus pumila;five tree species will experience decline in their suitable habitat including B.platyphylla,Tilia mongolica,Picea asperata,Pinus sylvestris,Pinus koraiensis;and four(Salix koreensis,Abies fabri,Pinus densiflora and Larix olgensis)showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios.The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China.The SDMs could be a potential tool for forest management planning.
基金supported by the National Natural Sci-ence Foundation of China (Grant No. 30972359)the Natural Science Foundation of Fujian Provinceince (No. 2008J0327, 2009J01232)
文摘Diameter frequency distribution in a specific stand provides basic information for forest resources management. In this study, four probability models were applied to analyze diameter distribution of natural forests after selective cutting with different intensities (low intensity of 13.0% in volume, medium intensity of 29.1%, high intensity of 45.8%, and extra-high intensity of 67.1%) The results show that the skewness and kurtosis of the four models are positive except that of low intensity selective cutting, which suggest that the number of small-size trees dominate the stand. The more intensity of selective cutting, the wider range of diameter distributions. The diameter structure of selective cutting with low intensity met Weibull and Beta distributions; that of medium intensity met Weibull, negative exponential as well as Gamma distributions; that of high intensity cutting met Weibull and negative exponential distributions, but that of extra-high intensity could not meet any above model. Weibull distribution model fits better than others regarding the structure of diameter distribution in natural forests managed on polycyclic cutting system. The results will provide basic information for sustainable management for mixed natural stands managed on a polycyclic cutting system.
文摘Permanent plots in the montane tropical rain forests in Xishuangbanna, southwest China, were established, and different empirical models, based on observation data of these plots in 1992, were built to model diameter frequency distributions. The focus of this study is on predicting accuracy of stem number in the larger diameter classes, which is much more important than that of the smaller trees, from the view of forest management, and must be adequately considered in the modelling and estimate. There exist 3 traditional ways of modelling the diameter frequency distribution: the negative exponential function model, limiting line function model, and Weibull distribution model. In this study, a new model, named as the logarithmic J-shape function, together with the others, was experimented and was found as a more suitable model for modelling works in the tropical forests.
基金Projects(60904101,60972164) supported by the National Natural Science Foundation of ChinaProject(N090404009) supported by the Fundamental Research Funds for the Central UniversitiesProject(20090461187) supported by China Postdoctoral Science Foundation
文摘Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.
基金partially supported by grants from the Russian Foundation for Basic Research to NBA (Project 12-04-00057)the Scientific School Support Program (NSh- 2990.2014)
文摘Predictive potential distribution modeling is of increasing importance in modern herpetological studies and determination of environmental and conservation priorities. In this article we provided results of analysis and forecasts of the potential distribution of smallscaled rock agama Paralaudakia microlepis (Blanford, 1874) using the distribution models through Maxent (www.cs.princeton.edu/- schapire / maxent). We made an attempt for comparison of input of bioclimatic factors and characteristics of biotope distribution for three species of genus Paralaudalda. Constructed model identified dissemination of Paralaudakia microlepis enough performance (AUC = 0.972 with dispersion 0.003). According to the map constructed, the most suitable habitats of smallscaled rock agama Paralaudakia microlepis are located in southern and eastern Iran, the west of central Pakistan and southeastern Afghanistan.