Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previousl...Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.展开更多
The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose...The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis展开更多
Under the Watershed Allied Telemetry Experimental Research (WATER) project, a significant amount of snow size data was collected from March to April 2008. However, because of limited observation data for the Qinghai...Under the Watershed Allied Telemetry Experimental Research (WATER) project, a significant amount of snow size data was collected from March to April 2008. However, because of limited observation data for the Qinghai-Tibet Plateau, the modeling behavior was not satisfactory. This paper demonstrates characteristics of the snow drop size distribution (SSD) in this region. The experimental area is located in the northeastern part of the Qinghai-Tibet Plateau. The Heihe River Basin, which is the second largest interior river basin in China and is located on the northern slopes of the Qilian Mountains, was selected as the simulation region. This basin ranges from approximately 5,000 m to 1,000 m in elevation. A new generation Parsivel disdrometer, the OTT Parsivel, was used for measurements. Four data sets were compiled to determine the average distributions for four different snowfall rates. The characteristics of the snow particle size distribution in the mountainous area were analyzed. Similar to the raindrop distribution, there was a multi-peak structure. Most peaks appear in the D 〈 2 mm region (D: diameter of the snow drop size). An M-P distribution and a Г distribution were developed based on the precipitation data observed in Qilian mountainous area. We found that the Г distribution has a better fit than the M-P distribution for the actual distribution. In addition, we observed that the intercept parameter (N0) and the slope parameter (Λ) correlate well with the shape parameter (μ). The disdrometer data can also be used to model the reflectivity factor (ZH) and differential reflectivity factor (ZDR). The radar reflectivity (ZHH, ZVV) and differential reflectivity (ZDR) were modeled in order to facilitate understanding of the connections between radar and ground measurements, and were used to support work for the improvement of rainfall estimates by polarimetric radar. Rain rate estimation using radar measurements was based on empirical models, such as the Z-R relationship and R(ZH, ZDR) in the Qilian mountainous areas. The relationship of R=0.017×100.079×ZH-0.022×ZDR is better than R=0.019×100.078×ZH for estimating R (melted snow). The normalized errors (NE) of R(ZH) and R(ZH, ZDR) are 13.22% and 5.20%, respectively.展开更多
Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.Firs...Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.展开更多
In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied envi...In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.展开更多
In this paper, an attempt has been made to find out the vertical distribution of RH at levels of 850, 700 and 500 hPa by using satellite-derived radiation parameters (i.e., albedo, outgoing longwave fluxes, absorb- ed...In this paper, an attempt has been made to find out the vertical distribution of RH at levels of 850, 700 and 500 hPa by using satellite-derived radiation parameters (i.e., albedo, outgoing longwave fluxes, absorb- ed solar radiation and net radiation). For this purpose, multiple regression equations are derived from MONEX-79 upsonde and dropsonde data over the Arabian Sea for the period 11--20 June 1979. Satellite- estimated RH fields have been compared with ECMWF RH fields obtained from FGGE level ⅢB data. The RMS error and error variance for satellite-estimated RH fields have been found to be less than for those of ECMWF. Satellite-estimated isohygric patterns show good agreement with the cloudiness patterns of GOES satellite, whereas ECMWF isohygric patterns do not show much resemblance with the cloudiness patterns. The results of the study suggest that satellite-estimated RH fields could be more useful than ECMWF RH fields and they can be used with some confidence in NWP models.展开更多
Fluidized bed opposed jet mills are capable of meeting the continuously growing dema nd for contamination-free fine particles.In this type of jet mill,the solid material is entrained and accelerated by expanding gas j...Fluidized bed opposed jet mills are capable of meeting the continuously growing dema nd for contamination-free fine particles.In this type of jet mill,the solid material is entrained and accelerated by expanding gas jets that are focused onto a focal point in side a fluidized bed.The resulting particle collisions induce breakage.The process is affected by the relative particle velocities and the number of particle-particle collisions.Clearly,both quantities are distributed.However,to date,neither relative particle velocities nor collision frequencies in such units have been determined.The present work introduces an innovative method to assess the stressing conditions in jet mills experimentally.To this end,mixtures of glass and ductile metal microspheres were used,with the latter employed in small amounts.Inter-particle collisions between the aluminum and glass spheres lead to the formation of dents on the microparticles.The size and number of these dents are associated with the individual collision velocities and overall collision frequencies.The correlation between dent size and collision velocity was obtained from finite element calculations based on empirical data.The proposed approach was validated using particle image velocimetry during secondary gas injection into a fluidized bed reactor.In this case the effect of the distance between two opposed nozzles was examined.For a lab-scaled fluidized bed opposed jet mill the effects of gas pressure and hold-up were investigated.Relative particle velocities were found to be sign ificantly lower tha n the gas velocities,while the nu mber of contacts per particle was determined to be extremely high.展开更多
Benzoguanamine formaldehyde (BG F) resins are a class of amino resins, which are important cross linking agents for epoxy, alkyol and acrylic resins, etc. The cross linking performance is the best one when the polymer...Benzoguanamine formaldehyde (BG F) resins are a class of amino resins, which are important cross linking agents for epoxy, alkyol and acrylic resins, etc. The cross linking performance is the best one when the polymerization degree is 2 4. This paper discusses the effects of the pH value for polycondensation and the formaldehyde to benzoguanamine mole ratio in a methanol system, and compares the relative molecular mass distribution using the Flory statistics method.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41822504, 42175099, 42027804, 42075073 and 42075077)the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science+4 种基金LIU is supported by the U.S. Department of Energy Atmospheric System Research (ASR) Program (DE-SC00112704)Solar Energy Technologies Office (SETO) under Award 33504LUO is supported by Research Fund of Civil Aviation Flight University of China (J2022-037)LI is supported by Research Fund of Civil Aviation Flight University of China (09005001)WU is supported by Research on Key of Manmachine Ring in Plateau Flight (FZ2020ZZ03)
文摘Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.
基金Supported by the National Natural Science Foundation of China (20976130 and 20806057), National Science and Technology Pillar Program of China (2007BAD42B02), Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-08-0386), and the R&D program of Tianjin Binhai New Area (2010-BK17C004)..
文摘The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis
基金supported by the CAS Action Plan for West Development Program (Grant number: KZCX2-XB2-09)Chinese State Key Basic Research Project (Grant number:2007CB714400)
文摘Under the Watershed Allied Telemetry Experimental Research (WATER) project, a significant amount of snow size data was collected from March to April 2008. However, because of limited observation data for the Qinghai-Tibet Plateau, the modeling behavior was not satisfactory. This paper demonstrates characteristics of the snow drop size distribution (SSD) in this region. The experimental area is located in the northeastern part of the Qinghai-Tibet Plateau. The Heihe River Basin, which is the second largest interior river basin in China and is located on the northern slopes of the Qilian Mountains, was selected as the simulation region. This basin ranges from approximately 5,000 m to 1,000 m in elevation. A new generation Parsivel disdrometer, the OTT Parsivel, was used for measurements. Four data sets were compiled to determine the average distributions for four different snowfall rates. The characteristics of the snow particle size distribution in the mountainous area were analyzed. Similar to the raindrop distribution, there was a multi-peak structure. Most peaks appear in the D 〈 2 mm region (D: diameter of the snow drop size). An M-P distribution and a Г distribution were developed based on the precipitation data observed in Qilian mountainous area. We found that the Г distribution has a better fit than the M-P distribution for the actual distribution. In addition, we observed that the intercept parameter (N0) and the slope parameter (Λ) correlate well with the shape parameter (μ). The disdrometer data can also be used to model the reflectivity factor (ZH) and differential reflectivity factor (ZDR). The radar reflectivity (ZHH, ZVV) and differential reflectivity (ZDR) were modeled in order to facilitate understanding of the connections between radar and ground measurements, and were used to support work for the improvement of rainfall estimates by polarimetric radar. Rain rate estimation using radar measurements was based on empirical models, such as the Z-R relationship and R(ZH, ZDR) in the Qilian mountainous areas. The relationship of R=0.017×100.079×ZH-0.022×ZDR is better than R=0.019×100.078×ZH for estimating R (melted snow). The normalized errors (NE) of R(ZH) and R(ZH, ZDR) are 13.22% and 5.20%, respectively.
基金supported by the National Natural Science Foundation of China(6120118161471037+1 种基金61571041)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201445)
文摘Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.
基金supported by the National Key Research and Development Program of China(No.2018AAA0102401)the National Natural Science Foundation of China(Nos.62022060,61773278,61873340).
文摘In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.
文摘In this paper, an attempt has been made to find out the vertical distribution of RH at levels of 850, 700 and 500 hPa by using satellite-derived radiation parameters (i.e., albedo, outgoing longwave fluxes, absorb- ed solar radiation and net radiation). For this purpose, multiple regression equations are derived from MONEX-79 upsonde and dropsonde data over the Arabian Sea for the period 11--20 June 1979. Satellite- estimated RH fields have been compared with ECMWF RH fields obtained from FGGE level ⅢB data. The RMS error and error variance for satellite-estimated RH fields have been found to be less than for those of ECMWF. Satellite-estimated isohygric patterns show good agreement with the cloudiness patterns of GOES satellite, whereas ECMWF isohygric patterns do not show much resemblance with the cloudiness patterns. The results of the study suggest that satellite-estimated RH fields could be more useful than ECMWF RH fields and they can be used with some confidence in NWP models.
基金the German Research Foundation through the DFG priority program 1679"Dynamic Simulation of Interconnected Solids Processes".
文摘Fluidized bed opposed jet mills are capable of meeting the continuously growing dema nd for contamination-free fine particles.In this type of jet mill,the solid material is entrained and accelerated by expanding gas jets that are focused onto a focal point in side a fluidized bed.The resulting particle collisions induce breakage.The process is affected by the relative particle velocities and the number of particle-particle collisions.Clearly,both quantities are distributed.However,to date,neither relative particle velocities nor collision frequencies in such units have been determined.The present work introduces an innovative method to assess the stressing conditions in jet mills experimentally.To this end,mixtures of glass and ductile metal microspheres were used,with the latter employed in small amounts.Inter-particle collisions between the aluminum and glass spheres lead to the formation of dents on the microparticles.The size and number of these dents are associated with the individual collision velocities and overall collision frequencies.The correlation between dent size and collision velocity was obtained from finite element calculations based on empirical data.The proposed approach was validated using particle image velocimetry during secondary gas injection into a fluidized bed reactor.In this case the effect of the distance between two opposed nozzles was examined.For a lab-scaled fluidized bed opposed jet mill the effects of gas pressure and hold-up were investigated.Relative particle velocities were found to be sign ificantly lower tha n the gas velocities,while the nu mber of contacts per particle was determined to be extremely high.
文摘Benzoguanamine formaldehyde (BG F) resins are a class of amino resins, which are important cross linking agents for epoxy, alkyol and acrylic resins, etc. The cross linking performance is the best one when the polymerization degree is 2 4. This paper discusses the effects of the pH value for polycondensation and the formaldehyde to benzoguanamine mole ratio in a methanol system, and compares the relative molecular mass distribution using the Flory statistics method.