In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilize...In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.展开更多
This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were prese...This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were presented.In this paper,we discuss the effects of disturbance forces and noises on the system,and summarize various analysis and modeling methods for these interferences,including the integral method,frequency domain analysis method,and magnitude evaluation method.By analyzing the impact of disturbances and noises on the system,the paper also summarizes the system’s performance under slight interferences.Additionally,we highlight current research difficulties in the field of DFACS noise analysis.Overall,this paper provides valuable insights into the modeling and analysis of disturbances and noises in DFACSs,and identifies key areas for future research.展开更多
The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque ...The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.展开更多
基金supported by National Natural Science Foundation of China (No.60504007)the PhD Programs Foundation of Ministry of Educationof China (No.20070286040)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.
基金This research was supported by National Key R&D Program of China:Gravitational Wave Detection Project(Nos.2021YFC2202601,2021YFC2202603)National Natural Science Foundation of China(No.12172288).
文摘This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were presented.In this paper,we discuss the effects of disturbance forces and noises on the system,and summarize various analysis and modeling methods for these interferences,including the integral method,frequency domain analysis method,and magnitude evaluation method.By analyzing the impact of disturbances and noises on the system,the paper also summarizes the system’s performance under slight interferences.Additionally,we highlight current research difficulties in the field of DFACS noise analysis.Overall,this paper provides valuable insights into the modeling and analysis of disturbances and noises in DFACSs,and identifies key areas for future research.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)
文摘The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.