Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal b...Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed t...The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.展开更多
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho...Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.展开更多
BACKGROUND Symptoms of depression and comorbid anxiety are known risk factors for cognitive impairment in major depressive disorder(MDD).Understanding their relationships is crucial for developing targeted interventio...BACKGROUND Symptoms of depression and comorbid anxiety are known risk factors for cognitive impairment in major depressive disorder(MDD).Understanding their relationships is crucial for developing targeted interventions to mitigate cognitive impairments in MDD patients.We expect that the severity of sleep disturbances and other depressive symptoms will be positively correlated with the degree of cognitive impairments.We also hypothesize that anxiety symptoms,especially psychic anxiety,is a key factor in predicting cognitive performance in MDD patients and may indirectly contribute to cognitive impairment by affecting sleep disturbances and other potential factors.AIM To determine which dimension of the depressive and anxiety symptoms predicts cognitive impairment during a depressive episode.METHODS A comprehensive neurocognitive test battery assessed executive function,attention,processing speed,and memory in 162 medication-free MDD patients and 142 matched healthy controls.The 24-item Hamilton Depression Rating Scale was used to assess depressive symptoms,and the 14-item Hamilton Anxiety Scale was used to assess anxiety symptoms.Linear regression analyses and mediation analyses were conducted to evaluate the impact of depressive and anxiety symptoms,as well as their interactions,on cognitive impairments.RESULTS Among the depressive symptoms,sleep disturbances were associated with poorer executive function(P=0.004),lower processing speed(P=0.047),and memory impairments(P<0.001),and psychomotor retardation(PR)was associated with lower processing speed in patients with MDD(P=0.019).Notably,PR was found to mediate the impact of sleep disturbances on the processing speed.Regarding anxiety symptoms,psychic anxiety,rather than somatic anxiety,was associated with cognitive impairments in all aspects.Sleep disturbances mediated the effect of psychic anxiety on executive function[β=-0.013,BC CI(-0.027,-0.001)]and memory[β=-0.149,BC CI(-0.237,-0.063)],while PR mediated its effect on processing speed(β=-0.023,BC CI(-0.045,-0.004)].CONCLUSION Sleep disturbances may be a key predictor of poorer executive function,lower processing speed,and memory loss,while PR is crucial for lower processing speed during a depressive episode.Psychic anxiety contributes to all aspects of cognitive impairments,mediated by sleep disturbances and PR.展开更多
The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body ...The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is prop...The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear time invariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.展开更多
This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are...This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.展开更多
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.Th...During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg.展开更多
The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to...The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to simulate the failure process of an underground cavern,which provided insights into the failure mechanism of deep hard rock affected by factors such as the dynamic stress-wave amplitudes,disturbance direction,and dip angles of the structural plane.The crack-propagation process,stress-field distribution,displacement,velocity of failed rock,and failure zone around the circular cavern were analyzed to identify the dynamic response and failure properties of the underground structures.The simulation results indicate that the dynamic disturbance direction had less influence on the dynamic response for the constant in situ stress state,while the failure intensity and damage range around the cavern always exhibited a monotonically increasing trend with an increase in the dynamic load.The crack distribution around the circular cavern exhibited an asymmetric pattern,possibly owing to the stress-wave reflection behavior and attenuation effect along the propagation route.Geological discontinuities significantly affected the stability of nearby caverns subjected to dynamic disturbances,during which the failure intensity exhibited the pattern of an initial increase followed by a decrease with an increase in the dip angle of the structural plane.Additionally,the dynamic disturbance direction led to variations in the crack distribution for specific structural planes and stress states.These results indicate that the failure behavior should be the integrated response of the excavation unloading effect,geological conditions,and external dynamic disturbances.展开更多
In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and im...In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.展开更多
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad...An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.展开更多
A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A slid...A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.展开更多
The formation problem of multi-agent systems via coordinated control is investigated,where the multiple agents can achieve the common velocity with leader and avoid collision during the evolution.In the real-world sit...The formation problem of multi-agent systems via coordinated control is investigated,where the multiple agents can achieve the common velocity with leader and avoid collision during the evolution.In the real-world situation,the communication is often disturbed and inaccurate.Hence,the unknown disturbances are considered in the velocity measurements,which is assumed to be bounded and does not need to be modelled.Moreover,a complicated nonlinear interaction among agents is presented in the design of control.Based on the existing work of multi-agent systems,a flocking control protocol is proposed to address the formation problem in the dynamic topology.The stability analysis is given to prove that the velocities of all agents can converge to the velocity of leader and the stable motion with collision avoidance can be achieved eventually.Finally,some simulations are presented to verify the effectiveness of the proposed algorithm.展开更多
The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturba...The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.展开更多
The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The flui...The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
Metabolic disturbances and obesity are major cardiovascular risk factors in patients with schizophrenia,resulting in a higher mortality rate and shorter life expectancy compared with those in the general population.Al...Metabolic disturbances and obesity are major cardiovascular risk factors in patients with schizophrenia,resulting in a higher mortality rate and shorter life expectancy compared with those in the general population.Although schizophrenia and metabolic disturbances may share certain genetic or pathobiological risks,antipsychotics,particularly those of second generation,may further increase the risk of weight gain and metabolic disturbances in patients with schizophrenia.This review included articles on weight gain and metabolic disturbances related to antipsychotics and their mechanisms,monitoring guidelines,and interventions.Nearly all antipsychotics are associated with weight gain,but the degree of the weight gain varies considerably.Although certain neurotransmitter receptorbinding affinities and hormones are correlated with weight gain and specific metabolic abnormalities,the precise mechanisms underlying antipsychoticinduced weight gain and metabolic disturbances remain unclear.Emerging evidence indicates the role of genetic polymorphisms associated with antipsychotic-induced weight gain and antipsychotic-induced metabolic disturbances.Although many guidelines for screening and monitoring antipsychotic-induced metabolic disturbances have been developed,they are not routinely implemented in clinical care.Numerous studies have also investigated strategies for managing antipsychotic-induced metabolic disturbances.Thus,patients and their caregivers must be educated and motivated to pursue a healthier life through smoking cessation and dietary and physical activity programs.If lifestyle intervention fails,switching to another antipsychotic drug with a lower metabolic risk or adding adjunctive medication to mitigate weight gain should be considered.Antipsychotic medications are essential for schizophrenia treatment,hence clinicians should monitor and manage the resulting weight gain and metabolic disturbances.展开更多
基金supported by grants from Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA22096018(to JY)Guangxi Key Research and Development Program,No.AB22080053(to DD)+6 种基金Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA23023004(to MZ)the National Natural Science Foundation of China,Nos.82260021(to MZ),82060315(to DD)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2021GXNSFBA220007(to GD)Clinical Research Center For Medical Imaging in Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection in Hunan Province,No.2020SK3006(to JL)Science and Technology Innovation Program of Hunan Province,No.2021RC4016(to JL)Key Project of the Natural Science Foundation of Hunan Province,No.2024JJ3041(to JL).
文摘Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
文摘The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.
基金support by Melbourne International Research Scholarship (MIRS)。
文摘Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.
基金Supported by National Key Research and Development Program of China,No.2019YFA0706200National Natural Science Foundation of China,No.82301738Natural Science Foundation of Hunan Province,No.2022JJ40701 and No.2022JJ40697.
文摘BACKGROUND Symptoms of depression and comorbid anxiety are known risk factors for cognitive impairment in major depressive disorder(MDD).Understanding their relationships is crucial for developing targeted interventions to mitigate cognitive impairments in MDD patients.We expect that the severity of sleep disturbances and other depressive symptoms will be positively correlated with the degree of cognitive impairments.We also hypothesize that anxiety symptoms,especially psychic anxiety,is a key factor in predicting cognitive performance in MDD patients and may indirectly contribute to cognitive impairment by affecting sleep disturbances and other potential factors.AIM To determine which dimension of the depressive and anxiety symptoms predicts cognitive impairment during a depressive episode.METHODS A comprehensive neurocognitive test battery assessed executive function,attention,processing speed,and memory in 162 medication-free MDD patients and 142 matched healthy controls.The 24-item Hamilton Depression Rating Scale was used to assess depressive symptoms,and the 14-item Hamilton Anxiety Scale was used to assess anxiety symptoms.Linear regression analyses and mediation analyses were conducted to evaluate the impact of depressive and anxiety symptoms,as well as their interactions,on cognitive impairments.RESULTS Among the depressive symptoms,sleep disturbances were associated with poorer executive function(P=0.004),lower processing speed(P=0.047),and memory impairments(P<0.001),and psychomotor retardation(PR)was associated with lower processing speed in patients with MDD(P=0.019).Notably,PR was found to mediate the impact of sleep disturbances on the processing speed.Regarding anxiety symptoms,psychic anxiety,rather than somatic anxiety,was associated with cognitive impairments in all aspects.Sleep disturbances mediated the effect of psychic anxiety on executive function[β=-0.013,BC CI(-0.027,-0.001)]and memory[β=-0.149,BC CI(-0.237,-0.063)],while PR mediated its effect on processing speed(β=-0.023,BC CI(-0.045,-0.004)].CONCLUSION Sleep disturbances may be a key predictor of poorer executive function,lower processing speed,and memory loss,while PR is crucial for lower processing speed during a depressive episode.Psychic anxiety contributes to all aspects of cognitive impairments,mediated by sleep disturbances and PR.
文摘The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.
文摘The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear time invariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.
基金supported in part by the Australian Research Council Discovery Project(DP160103567)the program of Jiangsu Specially-Appointed Professor(RK043STP19001)+1 种基金the fund of high-level talents at NJUPT(XK0430919039)the fund of scientific and technological innovation projects for overseas students in Nanjing(RK043NLX19004)。
文摘This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.
基金supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(51221004)the National Natural Science Foundation of China(11172260,11372270,and 51375434)+2 种基金the Higher School Specialized Research Fund for the Doctoral Program(20110101110016)the Science and technology project of Zhejiang Province(2013C31086)the Fundamental Research Funds forthe Central Universities of China(2013XZZX005)
文摘During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg.
基金The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China(Grant Nos.52004143,51774194)the Open fund for State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,the China Postdoctoral Science Foundation(No.2020M670781)the NSFC-Shandong Joint fund(Grant No.U1806208).
文摘The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to simulate the failure process of an underground cavern,which provided insights into the failure mechanism of deep hard rock affected by factors such as the dynamic stress-wave amplitudes,disturbance direction,and dip angles of the structural plane.The crack-propagation process,stress-field distribution,displacement,velocity of failed rock,and failure zone around the circular cavern were analyzed to identify the dynamic response and failure properties of the underground structures.The simulation results indicate that the dynamic disturbance direction had less influence on the dynamic response for the constant in situ stress state,while the failure intensity and damage range around the cavern always exhibited a monotonically increasing trend with an increase in the dynamic load.The crack distribution around the circular cavern exhibited an asymmetric pattern,possibly owing to the stress-wave reflection behavior and attenuation effect along the propagation route.Geological discontinuities significantly affected the stability of nearby caverns subjected to dynamic disturbances,during which the failure intensity exhibited the pattern of an initial increase followed by a decrease with an increase in the dip angle of the structural plane.Additionally,the dynamic disturbance direction led to variations in the crack distribution for specific structural planes and stress states.These results indicate that the failure behavior should be the integrated response of the excavation unloading effect,geological conditions,and external dynamic disturbances.
基金supported by the National Natural Science Foundation of China (Grant No. 50879012)State Key Laboratory of Robotics and System (HIT) (Grant No. SKLRS200706)
文摘In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.
基金supported by National Natural Science Foundation of China (No. 72103676)partially supported by the Fundamental Research Funds for the Central Universities
文摘An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.
文摘A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.
基金the National Key Research and Development Program of China(No.2021ZD0112500)the National Natural Scientific Foundation of China(No.12072128)。
文摘The formation problem of multi-agent systems via coordinated control is investigated,where the multiple agents can achieve the common velocity with leader and avoid collision during the evolution.In the real-world situation,the communication is often disturbed and inaccurate.Hence,the unknown disturbances are considered in the velocity measurements,which is assumed to be bounded and does not need to be modelled.Moreover,a complicated nonlinear interaction among agents is presented in the design of control.Based on the existing work of multi-agent systems,a flocking control protocol is proposed to address the formation problem in the dynamic topology.The stability analysis is given to prove that the velocities of all agents can converge to the velocity of leader and the stable motion with collision avoidance can be achieved eventually.Finally,some simulations are presented to verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6077401360925012)+1 种基金the National High Technology Research and Development Program of China(863 Program) (2008AA12A216)the National Basic Research Program of China (973 Program)(2009CB 724002)
文摘The fault diagnosis problem is investigated for a class of nonlinear neutral systems with multiple disturbances.Time-varying faults are considered and multiple disturbances are supposed to include the unknown disturbance modeled by an exo-system and norm bounded uncertain disturbance.A nonlinear disturbance observer is designed to estimate the modeled disturbance.Then,the fault diagnosis observer is constructed by integrating disturbance observer with disturbance attenuation and rejection performances.The augmented Lyapunov functional approach,which involves the tuning parameter and slack variable,is applied to make the solution of inequality more flexible.Finally,applications for a two-link robotic manipulator system are given to show the efficiency of the proposed approach.
基金the National Natural Science Foundation of China(10602032)the Shanghai Rising-Star Program(07QA14022)the Shanghai Leading Academic Discipline Project(Y0103)
文摘The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.
基金Supported by the Higher Education Sprout Project of the Ministry of Education,No.DP2-109-21121-01-N-07-04the Ministry of Science and Technology,No.MOST109-2314-B-038-083.
文摘Metabolic disturbances and obesity are major cardiovascular risk factors in patients with schizophrenia,resulting in a higher mortality rate and shorter life expectancy compared with those in the general population.Although schizophrenia and metabolic disturbances may share certain genetic or pathobiological risks,antipsychotics,particularly those of second generation,may further increase the risk of weight gain and metabolic disturbances in patients with schizophrenia.This review included articles on weight gain and metabolic disturbances related to antipsychotics and their mechanisms,monitoring guidelines,and interventions.Nearly all antipsychotics are associated with weight gain,but the degree of the weight gain varies considerably.Although certain neurotransmitter receptorbinding affinities and hormones are correlated with weight gain and specific metabolic abnormalities,the precise mechanisms underlying antipsychoticinduced weight gain and metabolic disturbances remain unclear.Emerging evidence indicates the role of genetic polymorphisms associated with antipsychotic-induced weight gain and antipsychotic-induced metabolic disturbances.Although many guidelines for screening and monitoring antipsychotic-induced metabolic disturbances have been developed,they are not routinely implemented in clinical care.Numerous studies have also investigated strategies for managing antipsychotic-induced metabolic disturbances.Thus,patients and their caregivers must be educated and motivated to pursue a healthier life through smoking cessation and dietary and physical activity programs.If lifestyle intervention fails,switching to another antipsychotic drug with a lower metabolic risk or adding adjunctive medication to mitigate weight gain should be considered.Antipsychotic medications are essential for schizophrenia treatment,hence clinicians should monitor and manage the resulting weight gain and metabolic disturbances.